Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!
Answer:
The molarity of the solution is 1.1 
Explanation:
Molarity is a measure of the concentration of that substance that is defined as the number of moles of solute divided by the volume of the solution.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units 
In this case
- number of moles of solute= 0.564 moles
- volume= 0.510 L
Replacing:

Solving:
molarity= 1.1 
<u><em>The molarity of the solution is 1.1 </em></u>
<u><em></em></u>
Answer:
A coffee cup calorimeter is great for measuring heat flow in a solution, but it can't be used for reactions that involve gases since they would escape from the cup. The coffee cup calorimeter can't be used for high-temperature reactions, either, because they would melt the cup.
The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
Answer:
0.289J of heat are added
Explanation:
We can relate the change in heat of a substance with its increasing in temperature using the equation:
q = m*ΔT*S
<em>Where Q is change in heat</em>
<em>m is mass of substance (In this case, 0.0948g of water)</em>
<em>ΔT = 0.728°C</em>
<em>S is specific heat (For water, 4.184J/g°C)</em>
Replacing:
q = 0.0948g*0.728°C*4.184J/g°C
q = 0.289J of heat are added