Answer:
3.2 g O₂
Explanation:
To find the mass of O₂, you need to (1) convert grams H₂O to moles H₂O (via molar mass), then (2) convert moles H₂O to moles O₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles O₂ to grams O₂ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given value (3.6 g).
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
2 H₂O -----> 2 H₂ + 1 O₂
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
3.6 g H₂O 1 mole 1 mole O₂ 31.996 g
---------------- x --------------- x --------------------- x --------------- = 3.2 g O₂
18.014 g 2 moles H₂O 1 mole
Can you translate in english i can’t understand this
The required mass of calcium bromide is 35.98 grams.
<h3>What is molarity?</h3>
Molarity is any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V, where
- M = molarity = 4M
- V = volume = 45mL = 0.045L
Moles will be calculated by using the above equation as:
n = (4)(0.045) = 0.18 mole
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Mass of CaBr₂ = (0.18mol)(199.89g/mol) = 35.98g
Hence required mass of CaBr₂ is 35.98 grams.
To know more about molarity, visit the below link:
brainly.com/question/22283918
#SPJ1
Coffee creamer is a base because if you eat it raw then it will soak up the acid in your stomach.