As we know that wavelength and frequency is inversely proportional to each other. Greater the wavelength smaller the frequency and vice versa.
Solution:
The relation between wavelength and frequency is as follow,
υ = c / λ
where
υ = frequency = ?
c = velocity of light = 3.0 × 10⁸ ms⁻¹
λ = wavenumber = 542 nm = 542 × 10⁻⁹ m
Putting the given values,
υ = 3.0 × 10⁸ ms⁻¹ / 542 × 10⁻⁹ m
Result:
υ = 5.53 × 10¹⁴ s⁻¹
As a pizza addict....i'd have to say Pepperoni...
It can block light. Please mark Brainliest!!!
The thing that governs whether a reaction is exothermic is the energy given out / used up to break / form the bonds in the reaction.
<span>When two substances react, the bonds in those substances first break up, releasing energy, before re-forming in a different way, taking in energy. The nature of the bonds that are broken up and reformed determines whether more energy is given out (exothermic) or taken in (endothermic)</span>
Element atomic number position
Ba 56 group 2, period 6
Ca 12 group 2, period 3
S 16 group 16, period 3
Si `14 group 14, period 3
Now, you need to know the properties of the different type of elements and the tendencies on the periodic table.
The metallic elements are, those placed on the left side of the periodic table, are the ones that release an electron more easily, so they will requiere less energy to give it up when forming chemical bonds.
The higher the metallic character the less the energy need to give up an electron.
The metallic character grows as the group number decreases (goes to the left) period increases (goes downward), so among the elements considered, Barium will require the least amount of energy to give un an electron when forming chemical bonds.