<u>Answer:</u> The percent change in volume will be 25 %
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Percent change of volume = 
Percent change of volume = 
Hence, the percent change in volume will be 25 %
Answer:
Explanation:
Flame test:
The metals ions can be detected through the flame test. Different ions gives different colors when heated on flame. Tom perform the flame test following steps should follow:
1. Dip a wire loop in the solution of compound which is going to be tested.
2. After dipping put the loop of wire on bunsen burner flame.
3. Observe the color of flame.
4. Record the flame color produce by compound
Color produce by metals:
Red = Lithium, zirconium, strontium, mercury, Rubidium (red violet)
Orange-red = calcium
Yellow = sodium, iron (brownish yellow)
Green = green
Blue = cesium. arsenic, copper, tantalum, indium, lead
Violet = potassium (lilac)
The reaction produces 2.93 g H₂.
M_r: 133.34 2.016
2Al + 6HCl → 2AlCl₃ + 3H₂
<em>Moles of AlCl₃</em> = 129 g AlCl₃ × (1 mol AlCl₃/133.34 g AlCl₃) = 0.9675 mol AlCl₃
<em>Moles of H₂</em> = 0.9675 mol AlCl₃ × (3 mol H₂/2 mol AlCl₃) = 1.451 mol H₂
<em>Mass of H₂</em> = 1.451 mol H₂ × (2.016 g H₂/1 mol H₂) = 2.93 g H₂
Answer:
Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
Explanation:
The benzene ring in itself does not easily undergo electrophilic substitution reaction. Some groups activate or deactivate the benzene ring towards electrophilic substitution reactions.
-NO2 ia a highly deactivating substituent therefore, Friedel-Crafts alkylation of nitrobenzene does not take place under any conditions.
This reaction scheme is therefore flawed because Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.