Density is found by dividing mass over volume:
d=M/V. In this problem, we know the density, and the mass. Solve the general equation for volume, then enter the values from the problem and evaluate:
d=m/v [multiply v to both sides, then divide d from both sides]
v=m/d
v=83.8g/(2.33g/cm³)
v=35.965 cm³
v=36.0 cm³ to three significant figures (since your given information only has 3 sig figs)
Ans: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Answer:
Δx ≥ 1.22 *10^-10m
Explanation:
<u>Step 1:</u> Data given
The E. coli bacterial cell has a mass of 1.80 fg ( = 1.80 * 10^-15 grams = 1.80 * 10^-18 kg)
Velocity of v = 8.00 μm/s (= 8.00 * 10^-6 m/s)
Uncertainty in the velocity = 3.00 %
E. coli bacterial cells are around 1 μm = 10^−6 m in length
<u>Step 2:</u> Calculate uncertainty in velocity
Δv = 0.03 * 8*10^-6 m/s =2.4 * 10^-7 m/s
<u>Step 3:</u> Calculate the uncertainty of the position of the bacterium
According to Heisenberg uncertainty principle,
Δx *Δp ≥ h/4π
Δx *mΔv ≥ h/4π
with Δx = TO BE DETERMINED
with m = 1.8 *10^-18 kg
with Δv = 2.4*10^-7
with h = constant of planck = 6.626 *10^-34
Δx ≥ 6.626*10^-34 / (4π*(1.8*10^-18)(2.4*10^-7))
Δx ≥ 1.22 *10^-10m
Answer:
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
Explanation:
Chemical equation:
BaCl₂ + Na₂SO₄ → BaSO₄ + NaCl
Balanced Chemical equation:
BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)
Ionic equation:
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)+ 2Na⁺(aq) + 2Cl⁻ (aq)
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
The Cl⁻(aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The BaSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.