Beginning when the bottom of the object first touches the water,
and as it descends and more and more of it goes under, the
buoyant force on it increases during that time.
As soon as the object is completely underwater, it doesn't matter
how deep under it is, the buoyant force on it remains the same.
Denser materials tend to be closer to earths center due to their mass gravity is shown by the equation mg
Which stands for mass x gravity.
Answer:
10.09 N
Explanation:
Analogously to Newton's second law, torque can be defined as:

Here, I is the moment of inertia and
is the angular acceleration. We have:

Torque is the vector product of the position vector of the point at which the force is applied by the force vector:

Since the effective lever arm is perpendicular to the force, the angle between them is
. The magnitud of this vector product is defined as:
.
Solving for F and replacing the known values:

Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer:
A. Wegener could not explain what made the continents move.
Explanation: