Answer: El mayor lado del rectangulo tiene 10cm
Step-by-step explanation:
El perímetro de un rectángulo puede escribirse como:
P = 2*L + 2*A
Donde L es el largo y A es el ancho.
Sabemos que uno de los lados es 6cm mas largo que el otro, entonces podemos escribir:
L = A + 6cm.
P = 28cm = 2*L + 2*A
podemos reemplazar la primera ecuación en la segunda:
28cm = 2*(A + 6cm) + 2*A
28cm = 12cm + 4*A
28cm - 12cm = 4*A
16cm/4 = A
4cm = A.
Entonces el ancho es 4 cm, y el largo es L = 4cm + 6cm = 10cm
Answer:
x = 2 or 1/4
Step-by-step explanation:
-13/4 -x= 1/2x -1
Collect like terms
-13/4+1=1/2x+x
Using LCM
(-13+4)/4=(1+2x²)/2x
9/4=(1+2x²)/2x
Cross multiply
9(2x)=4(1+2x²)
18x=4+8x²
Turn into quadratic and solve
8x²-18x+4
Using formulae method
-b±(√b²-4ac)/2a
Where a=8, b= -18 and c=4
(-(-18)±(√(-18)²-4(8)(4))/2(8)
(18±(√324-128))/16
(18±√196)/16
(18±14)/16
(18+14)/16 or (18-14)/16
32/16 or 4/16
2 or 1/4
The slope of the function for pronghorn antelope is 60.78 which infers that the rate of speed of the pronghorn is 60.78 miles per hour.
7) The given function that represents the speed of the pronghorn is
y = 60.78x - 5.4
Comparing this function with the general equation of a straight line
y = mx + c we can conclude that the slope of the function is 60.78 .
So the Pronghorn's rate of speed is 60.78 miles per hour.
8) Now the speed of the cheetah is given in the form of a table.
Let us take any two points on the graph
(0.5,21.85) and (2,118.60)
Slope of the line passing through these two points
= (118.6-21.85)/(2-0.5)
=64.5
So the slope of the graph is 64.5 and the average rate of speed of the Cheetah is 64.5 miles per hour.
9) From the above two slopes and the rate of speed we can conclude that the speed of the cheetah is 64.5 mph which is greater than that of the pronghorn 's speed of 60.78 miles per hour.
To learn more about slope visit:
brainly.com/question/13281781
#SPJ1
Yes that’s correct
14 x 2 =28
28 - 5
=23
Answer:
[/tex]
Step-by-step explanation:
1. 
2.
<em>factoring 96</em>
<em>since
</em>
3. 
<em>using exponent rule -
</em>
<em>
</em>
4. 
<em>doing some simple simplification and
and 6=2*3</em>
5. 
<em>collecting the roots on one side and applying exponent rule</em>
6. 
<em>Applying exponents rule on all
and
</em>
<em>7.
</em>
<em>combining all powers of 2</em>
8. 
<em>Simplifying</em>
9. 
10. 
11. 