![recall\ that\implies \cfrac{\frac{a}{b}}{\frac{c}{{{ d}}}}\implies \cfrac{a}{b}\cdot \cfrac{{{ d}}}{c}\qquad thus \\ \quad \\ \cfrac{\frac{3g}{4}}{\frac{2m}{3}}\implies \cfrac{3g}{4}\cdot \cfrac{3}{2m}\implies \cfrac{\square ?}{\square ?} \\-------------\\ \cfrac{\frac{5g}{8}}{\frac{1m}{2}}\implies \cfrac{5g}{8}\cdot \cfrac{2}{1m}\implies \cfrac{\square ?}{\square ?}](https://tex.z-dn.net/?f=recall%5C%20that%5Cimplies%20%5Ccfrac%7B%5Cfrac%7Ba%7D%7Bb%7D%7D%7B%5Cfrac%7Bc%7D%7B%7B%7B%20d%7D%7D%7D%7D%5Cimplies%20%5Ccfrac%7Ba%7D%7Bb%7D%5Ccdot%20%5Ccfrac%7B%7B%7B%20d%7D%7D%7D%7Bc%7D%5Cqquad%20thus%0A%5C%5C%20%5Cquad%20%5C%5C%0A%0A%5Ccfrac%7B%5Cfrac%7B3g%7D%7B4%7D%7D%7B%5Cfrac%7B2m%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B3g%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B3%7D%7B2m%7D%5Cimplies%20%5Ccfrac%7B%5Csquare%20%3F%7D%7B%5Csquare%20%3F%7D%0A%5C%5C-------------%5C%5C%0A%5Ccfrac%7B%5Cfrac%7B5g%7D%7B8%7D%7D%7B%5Cfrac%7B1m%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B5g%7D%7B8%7D%5Ccdot%20%5Ccfrac%7B2%7D%7B1m%7D%5Cimplies%20%5Ccfrac%7B%5Csquare%20%3F%7D%7B%5Csquare%20%3F%7D)
so... you tells us, which filling rate is the bigger and thus faster one?
Answer:
1
Step-by-step explanation:
2(k + 1) = -4(k - 2)
2k + 2 = --4k+8
2k+4k=8-2
6k=6
k=6/6
k=1
Y= -3. Someone else had the same question I just answered lol
50/50 chance of getting a yellow marble.
Explanation:
There are 10 yellow marbles in the bag, and the other half are other colors. This would create a 50/50 ratio.
I am honestly super rusty with probability but oh well...