
In other words, how many ways are there to choose

objects from a total of

objects? Just one; take all of them at the same time.
The equation that shows the correct relationship between the measures of the angles of the two triangles is;
Option D: The measure of angle BCA = The measure of angle C prime A prime B prime
<h3>How to Interpret Objects Transformation?</h3>
We are told that Triangle ABC is transformed to triangle A′B′C′.
Now, the triangle ABC and A'B'C' are similar triangles and we know that similar triangles angles are congruent. Thus;
From the given coordinates, we can say that;
∠BAC = ∠B'A'C'
∠ABC = ∠A'B'C'
∠ACB = ∠A'C'B'
Thus, the equation that shows the correct relationship between the measures of the angles of the two triangles is;
The measure of angle BCA = The measure of angle C prime A prime B prime
Read more about Objects Transformation at; brainly.com/question/2512124
#SPJ1
Yes. The umbrella is smaller than the suitcase. The suitcase is 81'^2, but the umbrella is 14
Step-by-step explanation:
They are equal because when we flip or reflect ABC onto DCB we are going to have the same size and the same shape
<em>Solu</em><em>tion</em><em>:</em>
<em>hypotenuse</em><em>=</em><em>p</em>
<em>perpe</em><em>ndicular</em><em>=</em><em>m</em>
<em>base</em><em>=</em><em>n</em>
<em>According</em><em> </em><em>to</em><em> </em><em>Pythagoras</em><em> </em><em>theorem</em><em>,</em>
<em>h^</em><em>2</em><em>=</em><em>p^</em><em>2</em><em>+</em><em>b</em><em>^</em><em>2</em>
<em>So</em><em> </em><em>the</em><em> </em><em>right </em><em>an</em><em>swer</em><em> </em><em>of</em><em> </em><em>you</em><em>r</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>m^</em><em>2</em><em>+</em><em>n^</em><em>2</em><em>=</em><em>p^</em><em>2</em>
<em>Right</em><em> </em><em>ans</em><em>wer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>A</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>