The potential energy of the block is A) 490 J
Explanation:
The potential energy of an object is the energy possessed by the object due to its position in the gravitational field.
It is calculated as follows:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object above the ground
For the block in this problem, we have:
m = 10 kg

h = 5 m
Therefore, its potential energy is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
I Will say the Answer is A
Explanation:
Get to school and learn boi
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.
1) The object slows down due to kinetic friction.
2) The coefficient of kinetic friction is higher on a carpet than on the bare floor, therefore the object would slow down quicker on the carpet