Explanation:
The correct answers to the fill in the blanks would be;
1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).
2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.
The polymer whose properties have been mentioned above is commonly known as Kevlar.
It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.
Except the Table of Contents
Its 0.001
0.01 x100 = 1mm
0.001x100=0.1mm
0.1=10mm
1m
The complete Question is:
Airflow through a long, 0.15-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct? Evaluate the properties of air at 300 K. For the sides of the duct, use the more accurate Churchill and Chu correlations for laminar flow on vertical plates.
What is the Rayleigh number for free convection on the outer sides of the duct?
What is the free convection heat transfer coefficient on the outer sides of the duct, in W/m2·K?
What is the Rayleigh number for free convection on the top of the duct?
What is the free convection heat transfer coefficient on the top of the duct, in W/m2·K?
What is the free convection heat transfer coefficient on the bottom of the duct, in W/m2·K?
What is the total heat gain to the duct per unit length, in W/m?
Answers:
- 7709251 or 7.709 ×10⁶
- 4.87
- 965073
- 5.931 W/m² K
- 2.868 W/m² K
- 69.498 W/m
Explanation:
Find the given attachments for complete explanation