70% of the chances you a car be a because if you see or 40° 51 5030 minutes and to 70% can be ignored to kinetic energy
Answer:
(a) See attachment
(b) The two planes are parallel because the intercepts for plane [220] are X = 0,5 and Y = 0,5 and for plane [110] are X = 1 and Y = 1. When the planes are drawn, they keep the same slope in a 2D plane.
(c) 
Explanation:
(a) To determine the intercepts for an specific set of Miller indices, the reciprocal intercepts are taken as follows:
For [110]

For [220]

The drawn of the planes is shown in the attachments.
(b) Considering the planes as two sets of 2D straight lines with no intersection to Z axis, then the slope for these two sets are:
For (1,1):

For (0.5, 0.5):

As shown above, the slopes are exactly equal, then, the two straight lines are considered parallel and for instance, the two planes are parallel also.
(c) To calculate the d-spacing between these two planes, the distance is calculated as follows:
The Miller indices are already given in the statement. Then, the distance is:


Answer:
V = 125.7m/min
Explanation:
Given:
L = 400 mm ≈ 0.4m
D = 150 mm ≈ 0.15m
T = 5 minutes
F = 0.30mm ≈ 0.0003m
To calculate the cutting speed, let's use the formula :

We are to find the speed, V. Let's make it the subject.

Substituting values we have:

V = 125.68 m/min ≈ 125.7 m/min
Therefore, V = 125.7m/min
Answer:
a)27.9%
b)
Explanation:
Given that
Fuel energy content = 73.1 MJ/kg
Useful power = 17.4 KW
Heat rejection rate = 44.8 KW
From first law of thermodynamics
Heat addition rate =Heat rejection rate + Power out put
Now by putting the values in the above formula
Heat addition rate = 44.8 + 17.4
Heat addition rate =62.2 KW
We know that efficiency is given as follows

So


So the efficiency is 27.9%.
Now to find usage rate of fuel
Lets take usage rate is 
Fuel energy content x usage rate of fuel = Heat addition rate
Now by putting the values


Answer: (C) 9.14 . 10⁻³ Ω
Explanation:
The resistance of a resistor, is proportional to his length and inversely proportional to his area, being the proportionality constant a property of the material, called resistivity.
The resistivity is defined as the inverse of the electrical conductivity, which depends on the number of charge carriers and the mobility of these carriers, which is different for each material.
So, we can calculate the resistance as follows:
R = 1/σ . L / A, where:
σ = electrical conductivity, l= length of the wire , A = wire cross-section (assumed circular).
Replacing by the values, we can calculate R as follows:
R = 1/6.1. 10⁷ (Ω.m) . 8.1 m. / π (0.0043)² m / 4 = 9.14 . 10⁻³ Ω