Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer: Pi= 4 - 4/3 + 4/5 - 4/7 + 4/9 ...
Explanation:
Is the same as the example,
If Π/4 = 1 - 1/3 + 1/5 - 1/7 + 1/9 ...
Then
(Π/4 )*4= 4*(1 - 1/3 + 1/5 - 1/7 + 1/9 ...)
Π =4 - 4/3 + 4/5 - 4/7 + 4/9 ...
The way to write this is
Sum(from n=0 to n=inf) of (-1)^n 4/(2n+1)
(photo)
Answer:
The settlement that is expected is 1.043 meters.
Explanation:
Since the pre-consolidation stress of the layer is equal to the effective stress hence we conclude that the soil is normally consolidated soil
The settlement due to increase in the effective stress of a normally consolidated soil mass is given by the formula

where
'H' is the initial depth of the layer
is the Compression index
is the inital void ratio
is the initial effective stress at the depth
is the change in the effective stress at the given depth
Applying the given values we get

The exit temperature is 586.18K and compressor input power is 14973.53kW
Data;
- Mass = 50kg/s
- T = 288.2K
- P1 = 1atm
- P2 = 12 atm
<h3>Exit Temperature </h3>
The exit temperature of the gas can be calculated isentropically as

Let's substitute the values into the formula

The exit temperature is 586.18K
<h3>The Compressor input power</h3>
The compressor input power is calculated as

The compressor input power is 14973.53kW
Learn more on exit temperature and compressor input power here;
brainly.com/question/16699941
brainly.com/question/10121263