Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer: I think The left-hand panel shows like a high level list of folders. And Right-hand panel shows the contents of selected folder.
Answer:
d
Explanation:
is the because that's the amount of work in making machine can do producing heat
Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa