Answer:
a) temperature: random error
b) parallax: systematic error
c) using incorrect value: systematic error
Explanation:
Systematic errors are associated with faulty calibration or reading of the equipments used and they could be avoided refining your method.
Answer:
Multiplying impulse response by t ( option D )
Explanation:
We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .
When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .
A diagram showing a use case diagrams for these requirements is given in the image attached.
<h3>What is system
Case diagram?</h3>
A use case diagram is known to be a kind of graphical illustration of a users in terms of their various possible association or interactions within any given system.
A use case diagram in banking can be used to prepare, depict and also to know all the functional requirements of the banking system.
Therefore, Give the use case specification for the banking system services and paying a bill online is given in the image attached.
Learn more about Case diagram from
brainly.com/question/12975184
#SPJ1
Answer:
Hello your question has some missing information below are the missing information
The refrigerant enters the compressor as saturated vapor at 140kPa Determine The coefficient of performance of this heat pump
answer : 2.49
Explanation:
For vapor-compression refrigeration cycle
P1 = P4 ; P1 = 140 kPa
P2( pressure at inlet ) = P3 ( pressure at outlet ) ; P2 = 800 kPa
<u>From pressure table of R 134a refrigerant</u>
h1 ( enthalpy of saturated vapor at 140kPa ) = 239.16 kJ/kg
h2 ( enthalpy of saturated liquid at P2 = 800 kPa and t = 60°C )
= 296.8kJ/kg
h3 ( enthalpy of saturated liquid at P3 = 800 kPa ) = 95.47 kJ/kg
also h4 = 95.47 kJ/kg
To determine the coefficient of performance
Cop = ( h1 - h4 ) / ( h2 - h1 )
∴ Cop = 2.49