1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
12

Consider a sphere made of stainless steel with diameter of 25 cm. It is heated to temperature of 300°C for some chemical tests.

After finishing the tests, the sphere is cooled by exposing it to a flow of air at 1 atm pressure and 25°C with a velocity of 3 m/s. By the end of cooling process, the sphere's temperature drops to 200°C. The rate of heat transfer loss due to convection is closest to:__________.
a) 485 W
b) 513 W
c) 88 W
d) 611 w
Engineering
1 answer:
DaniilM [7]3 years ago
4 0

Answer:

263.69 W.

(None of the option).

Explanation:

So, from the question above we are given the following parameters or data or information which is going to allow us to solve this question and they are;

(1). diameter of 25 cm.

(2). Initial temperature of 300°C.

(3).temperature drops to 200°C = final temperature.

Step one: Calculate the Reynolds number.

Reynolds number = 3 × 0.25/1.562 × 10^-5 = 48015.365.

Step two: Calculate average heat transfer coefficient.

The average heat transfer coefficient = k/D { 2 + (0.4Re^1/2 + 0.06Re^2/3} px^0.4 × (u/uz)^1/4.

The average heat transfer coefficient = 0.10204 × [ 2 + (87.65 + 79.26) (0.8719) × 0.8909.

average heat transfer coefficient = 0.20204 ( 2 + 129.652).

average heat transfer coefficient = 13.43/m^2.k.

Step three: The rate of heat transfer loss due to convection = (average heat transfer coefficient ) × πD^2 × ( T1 - T2).

The rate of heat transfer loss due to convection= 13.43 × π(0.25)^2 × (300 - 200).

=>The rate of heat transfer loss due to convection = 263.69 W.

You might be interested in
Consider a cubic block whose sides are 6 cm long and a cylindrical block whose height and diameter are also 6 cm. both blocks ar
bija089 [108]

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

5 0
3 years ago
H2O enters a conical nozzle, operates at a steady state, at 2 MPa, 300 oC, with the inlet velocity 30 m/s and the mass flow rate
Colt1911 [192]

Answer:

The flow velocity at outlet is approximately 37.823 meters per second.

The inlet radius of the nozzle is approximately 0.258 meters.

Explanation:

A conical nozzle is a steady state device used to increase the velocity of a fluid at the expense of pressure. By First Law of Thermodynamics, we have the energy balance of the nozzle:

Energy Balance

\dot m \cdot \left[\left(h_{in}+\frac{v_{in}^{2}}{2} \right)-\left(h_{out}+\frac{v_{out}^{2}}{2} \right)\right]= 0 (1)

Where:

\dot m - Mass flow, in kilograms per second.

h_{in}, h_{out} - Specific enthalpies at inlet and outlet, in kilojoules per second.

v_{in}, v_{out} - Flow speed at inlet and outlet, in meters per second.

It is recommended to use water in the form of superheated steam to avoid the appearing of corrosion issues on the nozzle. From Property Charts of water we find the missing specific enthalpies:

Inlet (Superheated steam)

p = 2000\,kPa

T = 300\,^{\circ}C

h_{in} = 3024.2\,\frac{kJ}{kg}

\nu_{in} = 0.12551\,\frac{m^{3}}{kg}

Where \nu_{in} is the specific volume of water at inlet, in cubic meters per kilogram.  

Outlet (Superheated steam)

p = 600\,kPa

T = 160\,^{\circ}C

h_{out} = 2758.9\,\frac{kJ}{kg}

If we know that \dot m = 50\,\frac{kJ}{kg}, h_{in} = 3024.2\,\frac{kJ}{kg}, h_{out} = 2758.9\,\frac{kJ}{kg} and v_{in} = 30\,\frac{m}{s}, then the flow speed at outlet is:

35765-25\cdot v_{out}^{2} = 0 (2)

v_{out} \approx 37.823\,\frac{m}{s}

The flow velocity at outlet is approximately 37.823 meters per second.

The mass flow is related to the inlet radius (r_{in}), in meters, by this expression:

\dot m = \frac{\pi \cdot v_{in}\cdot r_{in}^{2} }{\nu_{in}} (3)

If we know that \dot m = 50\,\frac{kJ}{kg}, v_{in} = 30\,\frac{m}{s} and \nu_{in} = 0.12551\,\frac{m^{3}}{kg}, then the inlet radius is:

r_{in} = \sqrt{\frac{\dot m\cdot \nu_{in}}{\pi\cdot v_{in}}}

r_{in}\approx 0.258\,m

The inlet radius of the nozzle is approximately 0.258 meters.  

7 0
3 years ago
Reference Parameters (returning multiple values): Write a C++ function that converts standard time to military time. Inputs incl
valkas [14]

Answer:

Code is given as below:

Explanation:

#include <iostream>

using namespace std;

//function prototype declaration

void MilitaryTime(int, int, char, int &, int &);

int main()

{

    //declare required variables

    int SHour, SMin, MHour, MMin;

    char AorP;

    //promt and read the hours from the user

    cout<<"Enter hours in standard time : ";

    cin>>SHour;

    //check the hours are valid are not

    while(SHour<0 || SHour>12)

    {

         cout<<"Invalid hours for standard time. "

             <<"Try again..."<<endl;

         cout<<"Enter hours in standard time : ";

         cin>>SHour;

    }

    //promt and read the minutes from the user

    cout<<"Enter minutes in standard time : ";

    cin>>SMin;

    //check the minutes are valid are not

    while(SMin<0 || SMin>59)

    {

         cout<<"Invalid minutes for standard time. "

             <<"Try again..."<<endl;

         cout<<"Enter minutes in standard time : ";

         cin>>SMin;

    }

    //promt and read the am or pm from the user

    cout<<"Enter standard time meridiem (a for AM p for PM): ";

    cin>>AorP;

    //check the meridiem is valid are not

    while(!(AorP=='a' || AorP=='p' || AorP=='A' || AorP=='P'))

    {

         cout<<"Invalid meridiem for standard time. "

             <<"Try again..."<<endl;

         cout<<"Enter standard time meridiem (a for AM p for PM): ";

         cin>>AorP;

    }

    //call function to calculate the military time

    MilitaryTime(SHour, SMin, AorP, MHour, MMin);

    //fill zeros and display standard time

    cout.width(2);

    cout.fill('0');

    cout<<SHour<<":";

    cout.width(2);

    cout.fill('0');

    cout<<SMin;

    if(AorP=='a' || AorP=='A')

         cout<<" am = ";

    else

         cout<<" pm = ";

    //fill zeros and display military time

    cout.width(2);

    cout.fill('0');

    cout<<MHour;

    cout.width(2);

    cout.fill('0');

    cout<<MMin<<endl;

    system("PAUSE");

    return 0;

}

//function to calculate the military time with reference parameters

void MilitaryTime(int SHour, int SMin, char AorP, int &MHour, int &MMin)

{

    //check the meredium is am or pm

    //and calculate hours

    if(AorP=='a' || AorP=='A')

    {

         if(SHour==12)

             MHour = 0;

         else

             MHour = SHour;

    }

    else

         MHour = SHour+12;

    MMin = SMin;

5 0
3 years ago
2. Other igneous rock forms from lava that cools quickly on Earth’s surface. Classify the rock as either intrusive or extrusive,
Darya [45]

Answer:

extrusive,

Explanation:

lava exlodes outwards, making it extrusive and not intrusive.

5 0
3 years ago
Propane burns at an equivalence ratio (ER) of 0.6, determine actual air-fuel ratio. If excess air is 5%, what will be the actual
dimaraw [331]

Answer:

when 5% excess air is supplied, moles of air supplied/moles of fuel = 23.81\times 1.05 =25

Explanation:

Equivalence ratio = 0.6

Equivalence ratio = Actual air to fuel ratio (AAFR)/ stoichiometric air to fuel ratio SAFR

combustion reaction of propane is

C_3H_8+ 5O_2 ----->3CO_2+4H_2O

From above reaction,  1 mole of propane, from the reaction, 5  moles of oxygen required,  

we know that air contains 21% O_2 and 79% N_2,

Therefore, moles of air based on stoichiometry = \frac{5}{0.21} = 23.81

Theoretical air to fuel ratio = \frac{23.81}{1} = 23.81

Given\frac{AFR}{SFR} = 0.6

Actual Air Fuel Ratio = 23.81\times 0.6 = 14.3

when 5% excess air is supplied, moles of air supplied/moles of fuel = 23.81\times 1.05 =25

6 0
3 years ago
Other questions:
  • The heat required to raise the temperature of m (kg) of a liquid from T1 to T2 at constant pressure is Z T2CpT dT (1) In high sc
    8·1 answer
  • Water flows at low speed through a circular tube with inside diameter of 2 in. A smoothly contoured body of 1.5 in. diameter is
    10·1 answer
  • 1. What is an op-amp? List the characteristics of an ideal op-amp
    11·1 answer
  • A 6-pole, 50 Hz squirrel cage induction motor has rotor resistance and standstill reactance referred to stator of 0.2 ohm and 1
    7·1 answer
  • What type of oil pressure gauge should be used when
    14·1 answer
  • Consider the velocity boundary layer profile for flow over u flat plate to be of the form u = C_1 + C_2 y. Applying appropriate
    6·1 answer
  • I’m doing a project on renewable energy. There are 6 energy sources. Solar, wind, geothermal, hydroelectric, tidal, and biomass.
    14·2 answers
  • What car has autopilot?
    14·2 answers
  • To measure the greening of the U.S. economy, you need only to look at the growing number of green jobs and occupations.
    10·2 answers
  • SUBJECT : SCIENCE
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!