1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
12

Consider a sphere made of stainless steel with diameter of 25 cm. It is heated to temperature of 300°C for some chemical tests.

After finishing the tests, the sphere is cooled by exposing it to a flow of air at 1 atm pressure and 25°C with a velocity of 3 m/s. By the end of cooling process, the sphere's temperature drops to 200°C. The rate of heat transfer loss due to convection is closest to:__________.
a) 485 W
b) 513 W
c) 88 W
d) 611 w
Engineering
1 answer:
DaniilM [7]3 years ago
4 0

Answer:

263.69 W.

(None of the option).

Explanation:

So, from the question above we are given the following parameters or data or information which is going to allow us to solve this question and they are;

(1). diameter of 25 cm.

(2). Initial temperature of 300°C.

(3).temperature drops to 200°C = final temperature.

Step one: Calculate the Reynolds number.

Reynolds number = 3 × 0.25/1.562 × 10^-5 = 48015.365.

Step two: Calculate average heat transfer coefficient.

The average heat transfer coefficient = k/D { 2 + (0.4Re^1/2 + 0.06Re^2/3} px^0.4 × (u/uz)^1/4.

The average heat transfer coefficient = 0.10204 × [ 2 + (87.65 + 79.26) (0.8719) × 0.8909.

average heat transfer coefficient = 0.20204 ( 2 + 129.652).

average heat transfer coefficient = 13.43/m^2.k.

Step three: The rate of heat transfer loss due to convection = (average heat transfer coefficient ) × πD^2 × ( T1 - T2).

The rate of heat transfer loss due to convection= 13.43 × π(0.25)^2 × (300 - 200).

=>The rate of heat transfer loss due to convection = 263.69 W.

You might be interested in
Describe a project in which you would use a pleater, ruffling foot, or gathering foot. Explain each of these tools and choose th
WITCHER [35]

A project that requires using a pleater, a ruffling foot, or a gathering foot is the creation of a dress.

A pleater, a ruffling foot, and a gathering foot are all accessories for sewing machines or machines themselves that help fashion designers to give the fabric a different shape or texture, and therefore create unique pieces.

  • Pleater: This tool includes multiple needles that go through the fabric to create multiple pleats
  • Ruffling foot: This is usually an accessory for sewing machines to create ruffles
  • Gathering foot: This tool is used to create gathers in fabric, these differ from ruffles because they are smaller and more subtle than ruffles

All of the tools can be used in the creation of a dress, for example, a pleater can be used in the top section of the dress to give it a nice texture and make it different from the skirt. In the same way, others such as the ruffling foot or the gathering foot can be used in the sleeves of the dress.

Learn more in: brainly.com/question/24702927

8 0
3 years ago
Who will win the Copa America 2021 and Euros 2021?
Bess [88]
Brazil will win copa America
4 0
3 years ago
QUESTION 3
lianna [129]
D D D D D D D D D D D D D D D DdDdddddf
6 0
3 years ago
What are the 3 dimensions that used in isometric sketches?
noname [10]

Answer:

The three dimensions shown in an isometric drawing are the height, H, the length, L, and the depth, D

Explanation:

An isometric drawing of an object in presents a pictorial projection of the object in which the three dimension, views of the object's height, length, and depth, are combined in one view such that the dimensions of the isometric projection drawing are accurate and can be measured (by proportion of scale) to draw the different views of the object or by scaling, for actual construction of the object.

5 0
3 years ago
Velocity components in an incompressible flow are: v = 3xy + x^2 y: w = 0. Determine the velocity component in the x-direction.
cupoosta [38]

Answer:

Velocity component in x-direction u=-\frac{3}{2}x^2-\frac{1}{3}x^3.

Explanation:

   v=3xy+x^{2}y

We know that for incompressible flow

   \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0

\frac{\partial v}{\partial y}=3x+x^{2}

So   \frac{\partial u}{\partial x}+3x+x^{2}=0

\frac{\partial u}{\partial x}= -3x-x^{2}

By integrate with respect to x,we will find

u=-\frac{3}{2}x^2-\frac{1}{3}x^3+C

So the velocity component in x-direction u=-\frac{3}{2}x^2-\frac{1}{3}x^3.

3 0
3 years ago
Other questions:
  • Calculate the osmotic pressure of seawater containing 3.5 wt % NaCl at 25 °C . If reverse osmosis is applied to treat seawater,
    13·1 answer
  • The flow curve for a certain metal has parameters: strain-hardening
    8·1 answer
  • Is someone an engineer that can help me?plz
    11·1 answer
  • A student is building a circuit which material should she use for the wires and why?
    10·2 answers
  • ⚠️I mark BRIANLIST ⚠️The same engineering teams are able to design and develop the different subsystems for an airplane.
    5·2 answers
  • The human eye, as well as the light-sensitive chemicals on color photographic film, respond differently to light sources with di
    13·1 answer
  • To solve the problem, make assumptions for missing data and justify. Given:
    15·1 answer
  • Ignition for heavy fuel oil?
    12·2 answers
  • It is important to follow correct procedures when running electrical cables next to data cables in order to protect against whic
    6·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!