Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.
It is helpful to study the light that comes off stars because C. The light from a star gives hints of what elements make up a star.
If you apply a little bit of force, one will move easier than the other since it is lighter.
Explanation:
M.A = load / Effort
efficiency = M.A/V.R X 100
75 = M.A / 4 X 100
75 = 25 X M.A
M.A = 75/25 = 3
M.A = load / effort
3 = 100/E
E = 100/3 = 33.333