Explanation:
Since, it is given that critical temperature of Argon is 150.9 K and critical pressure of Argon is 48.0 atm.
It is known that gas phase of neon occurs at 50 K. As the boiling point of Ar is more than the boiling point of neon which means that there is strong intermolecular force of attraction between argon molecules as compared to neon molecules.
This is also because argon is larger in size. As a result, induced dipole-induced dipole forces leads to more strength in Ar as compared to Ne.
Answer:
Pp O2 = 82.944 KPa
Explanation:
heliox tank:
∴ %wt He = 32%
∴ %wt O2 = 68%
∴ Pt = 395 KPa
⇒ Pp O2 = ?
assuming a mix of ideal gases at the temperature and volumen of the mix:
∴ Pi = RTni/V
∴ Pt = RTnt/V
⇒ Pi/Pt = ni/nt = Xi
⇒ Pi = (Xi)*(Pt)
∴ Xi: molar fraction (ni/nt)
⇒ 0.68 = mass O2/mass mix
assuming mass mix = 100 g
⇒ mass O2 = 68 g
∴ molar mass O2 = 32 g/mol
⇒ moles O2 = (68 g)(mol/32 g) = 2.125 mol O2
⇒ mass He = 32 g
∴ molar mass He = 4.0026 g/mol
⇒ moles He = (32 g)(mol/4.0026 g) = 7.995 mol He
⇒ nt = nO2 + nHe = 2.125 mol + 7.995 mol = 10.12 moles
molar fraction O2:
⇒ X O2 = nO2/nt = (2.125 mol/10.12 mol) = 0.2099
⇒ Pp O2 = (X O2)(Pt)
⇒ Pp O2 = (0.2099)(395 KPa)
⇒ Pp O2 = 82.944 KPa
Do you know the formula? I can’t find it.
I’m going to say Gravity.
Explanation:
Rate = 84mL/s
A minute has 60 seconds;
Rate = 84mL/s * 60s = 5040 mL/minute
Volume of blood in a minute = Rate * Number of beeats per minute
Volume = 5040 * 72 = 362880 mL
How long to circulate 3500ml?
1 minute = 362880mL
x = 3500 mL
x = 3500mL min / 362880mL
Math Expression:
Time to circulate 3500ml of blood (min) = 3500ml * 1 minute / Volume of blood at a rate of 84ml/s and 72 beats per minute (ml)