1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
11

Describe three important ways we use the electromagnetic spectrum in our everyday lives.

Physics
1 answer:
OlgaM077 [116]3 years ago
5 0

Answer:

We use X-rays to help the injured, Radiowaves to communicate or entertain, and Visible light to see.

You might be interested in
A right triangle ABC has sides /AB/ =9cm, /BC/=12cm find /AC/ and angles ACB and ABC if angle BAC= 90°​
dezoksy [38]

fdi9bn 08989089089008i uuuuuuri9ij

8 0
4 years ago
What is the middle layer of earth called
irinina [24]
The middle or centre of the Earth is the core. However the middle of the layers from the surface to the centre of the Earth is known as mantle. 
6 0
3 years ago
Read 2 more answers
An airplane was 300 km [N] of Toronto airport, 3 hours later the airplane 600 km [S]
Alecsey [184]

Answer:

Explanation:

a) 300 + 600 = 900 km S

b) 900/3 = 300 km/hr S

8 0
3 years ago
If two objects A and B have the same kinetic energy but A has three times the momentum of B, what is the ratio of their inertias
Thepotemich [5.8K]

Answer:

\frac{inertia_B}{inertia_A}=9

Explanation:

First of all, let's remind that:

- The kinetic energy of an object is given by K=\frac{1}{2}mv^2, where m is the mass and v is the speed

- The momentum of an object is given by p=mv

- The inertia of an object is proportional to its mass, so we can write I=km, where k just indicates a constant of proportionality

In this problem, we have:

- K_A = K_B (the two objects have same kinetic energy)

- p_A = 3 p_B (A has three times the momentum of B)

Re-writing both equation we have:

\frac{1}{2}m_A v_A^2 = \frac{1}{2}m_B v_B^2\\m_A v_A = 3 m_B v_B

If we divide first equation by second one we get

v_A = 3 v_B

And if we substitute it into the first equation we get

m_A (3 v_B)^2 = m_B v_B^2\\9 m_A v_B^2 = m_B v_B^2\\m_B = 9 m_A

So, B has 9 times more mass than A, and so B has 9 times more inertia than A, and their ratio is:

\frac{I_B}{I_A}=\frac{km_B}{km_A}=\frac{9m_A}{m_A}=9

7 0
3 years ago
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
3 years ago
Other questions:
  • Which statement correctly describes the movement of thermal energy according to the second law of thermodynamics? The natural te
    8·2 answers
  • You are creating waves in a rope by shaking your hand back and forth. Without changing the distance your hand moves, you begin t
    15·1 answer
  • What is the work done by 20 Newton force applied at an angle of 45.0° to move a box a horizontal distance of 40 meters
    5·2 answers
  • _____ is the transfer of thermal energy between two bodies which are at different temperatures. The si unit for this is the joul
    10·1 answer
  • You purchase a ten-year 1,000 bond with semiannual coupons for 982. The bond has a 1,100 redemption payment at maturity, a nomin
    10·1 answer
  • What is the speed of a wave on a string with a wavelength of 1.75 m and a frequency of 2.0 Hz
    11·1 answer
  • An electric generator has an 18-cmcm-diameter, 120-turn coil that rotates at 60 HzHz in a uniform magnetic field that is perpend
    14·1 answer
  • if a car is moving down the highway at a constant velocity what does this mean about the cars acceleration?
    8·1 answer
  • HELPPPPPPP PLEASE! ASAPPPPPP
    10·1 answer
  • (2) Put 5kg mass at left side (at 2m). This is fixed throughout the experiment! (3) Try to balance by putting 5kg mass at the ri
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!