The correct answer is B).
Answer: Energy of a shear wave relates to the direction of a particle motion is downwards.
Explanation:
Answer:

Explanation:
You calculate the energy required to break all the bonds in the reactants.
Then you subtract the energy needed to break all the bonds in the products.
2H₂ + O₂ ⟶ 2H-O-H
Bonds: 2H-H 1O=O 4H-O
D/kJ·mol⁻¹: 436 498 464

Gamma rays, or rather gamma radiation are most commonly used.
Answer:
4.43 g Cl₂
Explanation:
To find the mass of Cl₂, you need to (1) convert moles HCl to moles Cl₂ (via the mole-to-mole ratio from equation coefficients) and then (2) convert moles Cl₂ to grams (via the molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units. The final answer should have 3 significant figures like the given value.
4 HCl(g) + O₂(g) -----> 2 Cl₂(g) + 2 H₂O(g)
^ ^
Molar Mass (Cl₂): 2(35.453 g/mol)
Molar Mass (Cl₂): 70.906 g/mol
0.125 moles HCl 2 moles Cl₂ 70.906 g
-------------------------- x ---------------------- x ------------------- = 4.43 g Cl₂
4 moles HCl 1 mole