Answer:
a. 58.5 g/mol
b. 0.1 mol
Explanation:
a.
The molar mass of Na is 23.0 g/mol. The molar mass of Cl is 35.5 g/mol. The molar mass of NaCl is:
M(Na) + M(Cl) = 23.0 g/mol + 35.5 g/mol = 58.5 g/mol
b. A healthy adult should eat no more than 6 g of salt in one day. The moles corresponding to 6 g of NaCl are:
6 g × (1 mol/58.5 g) = 0.1 mol
<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
The <span>era that is know as the age of mammals is the </span><span>Mesozoic
period.
Answer: Letter D
Hope that helps. -UF aka Nadoa</span>