Answer: 2.8 moles
Explanation:
The balanced equation below shows that 1 mole of sodium oxide reacts with 1 mole of water to form 2 moles of sodium hydroxide respectively.
Na2O + H2O --> 2NaOH
1 mole of H2O = 2 moles of NaOH
Let Z moles of H2O = 5.6 mole of NaOH
To get the value of Z, cross multiply
5.6 moles x 1 mole= Z x 2 moles
5.6 = 2Z
Divide both sides by 2
5.6/2 = 2Z/2
2.8 = Z
Thus, 2.8moles of H2O are needed to produce 5.6 mol of NaOH
C. the number of protons and neutrons an element has in its nucleus
a. the ratio of mass to charge of an electron
Explanation:
The experiment permitted the direct measurement of the ratio of mass to charge of an electron.
- The charge to mass ratio of an electron was determine by accelerating a beam of cathode rays in magnetic and electric fields.
- No matter the gas used in the tube or the nature of the material of the electrodes, the rays were found to have constant charge to mass ratio of 1.76 x 10¹¹coulombkg⁻¹.
learn more:
Subatomic particles brainly.com/question/2757829
#learnwithBrainly
Explanation:
Molarity is defined as number of moles per liter of solution.
Mathematically, molarity = 
It is given that molarity is 0.0800 M and volume is 50.00 mL or 0.05 L.
molarity = 
0.0800 M = 
no. of moles = 1.6 mol
Therefore, molar mass of cupric sulfate pentahydrate is 249.68 g/mol. So, calculate the mass as follows.
No. of moles = 
mass in grams = 
= 
= 399.488 g
Thus, we can conclude that 399.488 g of cupric sulfate pentahydrate are needed to prepare 50.00 mL of 0.0800M CuSO4× 5H2O.