Lets take 100 g of this compound,
so it is going to be 2.00 g H, 32.7 g S and 65.3 g O.
2.00 g H *1 mol H/1.01 g H ≈ 1.98 mol H
32.7 g S *1 mol S/ 32.1 g S ≈ 1.02 mol S
65.3 g O * 1 mol O/16.0 g O ≈ 4.08 mol O
1.98 mol H : 1.02 mol S : 4.08 mol O = 2 mol H : 1 mol S : 4 mol O
Empirical formula
H2SO4
Hey there! Here is the answer:
B.) decrease; increase
Here's why:
As you move from left to right across a period on the periodic table the size of an atom will decrease. As you move from top to bottom down a group on the periodic table the size of an atom will increase.
I really hope this answer helps you out! :)
Answer: (C) conservation of matter
Solution: Law of conservation of matter or mass states that' total mass of the reactants should always be equal to the total mass of the product that is the total mass is remained conserved in a chemical reaction.
A balanced chemical equation always follow this law.
For example:

Mass of hydrogen = 1 g/mol
Mass of Oxygen = 16 g/mol
Total mass on the reactants = 2(2×1)+(2×16)= 36g/mol
Total mass on the product side = 2[(2×1) +16] = 36 g/mol
As,
Mass on reactant side = Mass on the product side
Therefore, a balanced chemical reaction follows Law of Conservation of mass.
Answer:
Q = 114349.5 J
Explanation:
Hello there!
In this case, since this a problem in which we need to calculate the total heat of the described process, it turns out convenient to calculate it in three steps; the first one, associated to the heating of the liquid water from 40 °C to 100 °C, next the vaporization of liquid water to steam at constant 100 °C and finally the heating of steam from 100 °C to 115 °C. In such a way, we calculate each heat as shown below:

Thus, the total energy turns out to be:

Best regards!