Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
carbon atoms form 2 bonds with sharing valence electrons
Answer:.633
Explanation:
I have know idea but it was right
Answer:
A) if the system is isothermal then all the heat added to the system will be used to do work (since none is used to raise the temperature of the gas). The heat added will be equal to the work done = 340 J
B) change in internal energy of the system of the process is isothermal will be zero, since there is no rise in temperature.
C) an adiabatic process is one involving no heat loss or gain through the system, Therefore heat gain will be zero
D) if the process is adiabatic then there is no heat loss or gain through the system and hence there is no change in temperature. Change in internal energy will be zero
E) if the process is isobaric then, there is no work done and the total heat to the system is equal zero
F) if there is no work done, and no heat added, then the internal energy will be equal zero.
Delta waves are associated with a deep sleep~