6.02 times 10 to the 23rd power
They are called representative elements.
According to Avogadro's number there are 62.53 atoms of chlorine in 1.1x 10
moles of Cl atoms.
<h3>What is Avogadro's number?</h3>
Avogadro's number is defined as a proportionality factor which relates number of constituent particles with the amount of substance which is present in the sample.
According to the definitions, Avogadro's number depend on determined value of mass of one atom of those elements.It bridges the gap between macroscopic and microscopic world by relating amount of substance with number of particles.
Number of atoms can be calculated using Avogadro's number as follows: mass/molar mass×Avogadro's number or number of moles×Avogadro's number.
ON substitution in above formula number of atoms=1.1×10²¹×6.023×10²³=62.53 atoms
Thus, there are 62.53 chlorine atoms in 1.1x 10
moles of Cl atoms.
Learn more about Avogadro's number,here:
brainly.com/question/11907018
#SPJ1
Answer:
Explanation:
The rate law of a chemical reaction is given by
This law can be written for any experiment, and making the quotient between those expressions the reaction orders can be found
Between experiments 1 and 2
![\frac{-r_{A1}}{{-r}_{A2}}=\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)^\beta](https://tex.z-dn.net/?f=%5Cfrac%7B-r_%7BA1%7D%7D%7B%7B-r%7D_%7BA2%7D%7D%3D%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%5E%5Cbeta)
Then the expression for the calculation of 
![\beta=\frac{ln\frac{-r_{A1}}{-r_{A2}}}{ln\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)}=\frac{ln\frac{0.2130}{0.1065}}{ln\left(\frac{0.250}{0.125}\right)}](https://tex.z-dn.net/?f=%5Cbeta%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA1%7D%7D%7B-r_%7BA2%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.2130%7D%7B0.1065%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.250%7D%7B0.125%7D%5Cright%29%7D)
Resolving
Doing the same between experiments 3 and 4 the expression for
is
![\alpha=\frac{ln\frac{-r_{A3}}{-r_{A4}}}{ln\left(\frac{\left[BF_3\right]_3}{\left[BF_3\right]_4}\right)}=\frac{ln\frac{0.0682}{0.1193}}{ln\left(\frac{0.200}{0.350}\right)}](https://tex.z-dn.net/?f=%5Calpha%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA3%7D%7D%7B-r_%7BA4%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BBF_3%5Cright%5D_3%7D%7B%5Cleft%5BBF_3%5Cright%5D_4%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.0682%7D%7B0.1193%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.200%7D%7B0.350%7D%5Cright%29%7D)
Resolving

This means that the rate law for this reaction is