When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.
Answer:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Explanation:
Continuous spectrum and line spectrum are two types of spectra; their main difference is that continuous spectrum contains no gaps whereas line spectrum contains many gaps.
Here I found some info at Yahoo answers: https://answers.yahoo.com/question/index?qid=20090119191941AAB7oAb
The more electronegative an atom is the more unwilling it is to lose its electrons in a compound. If you do try to take a very EN atom away from a compound you'll need to apply a lot of energy for that to happen. I can give an example of a single atom though
<span>Cl has 7 valence electron filled and every atom wants to be like nobles (noble gases), so it's not going to give an electron away b/c it's really close to being like a noble gas. Noble gases are the most stable atoms, which is why I say stability counts.</span>
Alkali metals.
Elements found in group 1 of the periodic table.