The score of Raven is 9 points
<em><u>Solution:</u></em>
Let the point scored by bangal be"x"
Score of Raven = 40 points
Given that,
The ravens scored 13 more than three times number points that the bangals scored in their last game
Score of raven = 13 + 3(score of bangal)
40 = 13 + 3x
Solve the above equation for x
3x = 40 - 13
3x = 27
x = 9
Thus the score of Raven is 9 points
Answer:
x = 13/6
Step-by-step explanation:
We are the following expression;
x - 2(2 - (3/2)*x) = 2(4 - x) + 1
x - (4 - 3*x) = 8 - 2*x + 1
x - 4 + 3*x = 8 - 2*x + 1
4*x + 2*x = 9 + 4
6*x = 13
x = 13/6
Class F=36.6666666667%
class E=33.3333333333%
class H=41.6666666667%
class G=<span>32%</span>
2x+4=10
2x=6
x=3
2(3)+4= 10
(plus, on parallelograms like that, parallel sides are equal to each other)
Answer:
a) P(X=2)= 0.29
b) P(X<2)= 0.59
c) P(X≤2)= 0.88
d) P(X>2)= 0.12
e) P(X=1 or X=4)= 0.24
f) P(1≤X≤4)= 0.59
Step-by-step explanation:
a) P(X=2)= 1 - P(X=0) - P(X=1) - P(X=3) - P(X=4)= 1-0.41-0.18-0.06-0.06= 0.29
b) P(X<2)= P(X=0) + P(X=1)= 0.41 + 0.18 = 0.59
c) P(X≤2)= P(X=0) + P(X=1) + P(X=2)=0.41+0.18+0.29= 0.88
d) P(X>2)=P(X=3) + P(X=4)=0.06+0.06= 0.12
e) P(X=1 or X=4)=P(X=1 ∪ X=4) = P(X=1) + P(X=4)=0.18+0.06= 0.24
f) P(1≤X≤4)=P(X=1) + P(X=2) + P(X=3) + P(X=4)=0.18+0.29+0.06+0.06= 0.59