Answer:
Option B. 
Step-by-step explanation:
we know that
The frequency is equal to the number of cycles divided by the time
Remember that
1 cycle = 1 full wave to repeat itself
In this problem
From o to 12 seconds ------> there are 2 cycles
therefore
The frequency is equal to

So
y=ax^2+bx+c
(x,y)
sub the points and solve
(4.28,6.48)
6.48=a(4.28)^2+b(4.28)+c
(12.61,15.04)
15.04=a(12.61)^2+b(12.61)+c
well, for 3 variables, we need equations and therefor 3 points
maybe we are supposed to assume it starts at (0,0)
so then
0=a(0)^2+b(0)+c
0=c
so then
6.48=a(4.28)^2+b(4.28)
15.04=a(12.61)^2+b(12.61)
solve for a by subsitution
first equation, minut a(4.28)^2 from both sides
6.48-a(4.28)^2=b(4.28)
divide both sides by 4.28
(6.48/4.28)-4.28a=b
sub that for b in other equation
15.04=a(12.61)^2+b(12.61)
15.04=a(12.61)^2+((6.48/4.28)-4.28a)(12.61)
expand
15.04 =a(12.61)^2+(81.7128/4.28)-53.9708a
minus (81.7128/4.28) both sides
15.04-(81.7128/4.28)=a(12.61)^2-53.9708a
15.04-(81.7128/4.28)=a((12.61)^2-53.9708)
(15.04-(81.7128/4.28))/(((12.61)^2-53.9708))=a
that's the exact value of a
to find b, subsitute to get
(6.48/4.28)-4.28((15.04-(81.7128/4.28))/(((12.61)^2-53.9708)))=b
if we aprox
a≈-0.038573167896199
b≈1.6791118501845
so then the equation is
y=-0.038573167896199x²+1.6791118501845x
Given two functions are
f(x) = 2 cos(x)
g(x) = 3 sin(x+
)
We know that the maximum value of cos x and sin x is always 1
y= maximum of cos = 1
y= maximum of sin =1
f(x) = 2 cos(x)
y= 2 (max of cos) = 2(1) = 2
g(x) = 3 sin(x+
)
y= 3 (max of sin) = 3(1) = 3
g(x) = 3 sin(x+
) has the maximum value.
Answer:
The correct option is G.Hope this help!!
First, you have to find the equation of the perpendicular bisector of this given line.
to do that, you need the slope of the perpendicular line and one point.
Step 1: find the slope of the given line segment. We have the two end points (10, 15) and (-20, 5), so the slope is m=(15-5)/(10-(-20))=1/3
the slope of the perpendicular line is the negative reciprocal of the slope of the given line, m=-3/1=-3
step 2: find the middle point: x=(-20+10)/2=-5, y=(15+5)/2=10 (-5, 10)
so the equation of the perpendicular line in point-slope form is (y-10)=-3(x+5)
now plug in all the given coordinates to the equation to see which pair fits:
(-8, 19): 19-10=9, -3(-8+5)=9, so yes, (-8, 19) is on the perpendicular line.
try the other pairs, you will find that (1,-8) and (-5, 10) fit the equation too. (-5,10) happens to be the midpoint.