The ball orbit the Earth, when launched from the theoretical cannon of Newton, is option B. it is magnetically attracted.
<h3>Newton's Cannonball:</h3>
Newton's cannonball was a hypothetical situation. Isaac Newton once proposed that gravity, which he believed to be a universal force, was the primary factor behind the planetary motion. In this experiment, Newton imagines projecting a stone or a cannonball onto the summit of a very tall mountain. The body should move away from Earth in the direction it was projected if there were no effects from gravity or air resistance.
Depending on the projectile's initial velocity and the gravitational force acting on it, the bullet will travel in a different direction. Low speeds result in a simple fallback to Earth. The Earth's surface causes the cannonball to deviate from its elliptical route.
Learn more about Newton's Cannonball here:
brainly.com/question/18776112
#SPJ1
Answer:
r = 0.0548 m
Explanation:
Given that,
Singly charged uranium-238 ions are accelerated through a potential difference of 2.20 kV and enter a uniform magnetic field of 1.90 T directed perpendicular to their velocities.
We need to find the radius of their circular path. The formula for the radius of path is given by :

m is mass of Singly charged uranium-238 ion, 
q is charge
So,

So, the radius of their circular path is equal to 0.0548 m.
A theory is an explanation that unites the findings of many experiments, and it can be changed when new experimental results need to be explained.
Answer:
θ = 45º
Explanation:
The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz
I = I₀ cos² θ
in the problem they ask us
I = ½ I₀
let's look for the angles
½ I₀ = I₀ cos² θ
cos θ = √ ½ = 0.707
θ = cos 0.707
θ = 45º