Answer:
Explanation:
Speed of the source of sound = v = 44.7 m/s
Speed of sound = V = 343 m/s
a) Apparent frequency as the train approaches = f = [V /(V -v) ] × f
= [343 / (343 - 44.7) ] × 415 = 477.18 Hz
Wave length = λ = v / f = 343 / 477.18 = 0.719 m
b) Frequency heard as the train leaves = f ' = [V / ( V + v) ] f
= [343 / { 343 + 44.7 ) ] x 415
= 367.2 Hz
Wavelength when leaving = v / f = 343 / 367.2 = 0.934 m
(13.558 gm) · (1 L / 0.089 gm) = 152.34 L (rounded)
(fraction equal to ' 1 ') ^
Answer:
P₂ = 1.22 kPa
Explanation:
This problem can be solved using the equation of state:

where,
P₁ = initial pressure = 1 KPa
P₂ = final pressure = ?
V₁ = initial Volume = 1 liter
V₂ = final volume = 1.1 liter
T₁ = initial temperature = 290 k
T₂ = final temperature = 390 k
Therefore,

<u>P₂ = 1.22 kPa</u>
The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.