Answer:
1.2 mi/hr/sec
Explanation:
<em>a = Vf - Vi / t (formula)</em>
-----------------------------------
6mi/hr - 0 mi/hr 6 mi/hr
a = ____________ = _______ = 1.2 mi/hr/sec
5 sec 5 sec
Answer:
<h2>a.The ball's vertical acceleration is downwards.</h2><h2>e.The ball's horizontal acceleration is zero</h2>
Explanation:
We are given that Sarah throws a tennis ball as far as she can.
At the moment the ball reaches its maximum height.
We have to find the true statement if air resistance is neglect.
When air resistance is negligible then the force act on the ball is force due to gravity.
The ball throw vertically then the acceleration act on the ball is acceleration due to gravity.
The value of g=-9.8 m/square sec
It acts on the ball in downward direction .
Therefore, the ball's vertical acceleration is downwards.
The horizontal acceleration is zero because the ball reaches at maximum height then there is no force which act in horizontal direction on the ball.
Therefore, horizontal acceleration of the ball is zero.
Hence, option a and e are true.
The atoms/ particles that are in the gas have gotten energy from the heat, because of that, they zoom around the container, putting pressure on it :) hope it helps :)
well thanks for the Information
Answer:

Explanation:
Consider the axis diagram attached.
Given:
Ey = Ez = 0
Eₓ = - 4x N/C · m
Since electric field is in x direction, potential difference would be:
Here we integrate between limits 0 and 4.40 which is distance between A and B along x-axis.
![V_{b} - V_{a} = -4 \left[\begin{array}{ccc}\frac{x^{2} }{2} \end{array}\right]^{4.40}_{0}](https://tex.z-dn.net/?f=V_%7Bb%7D%20-%20V_%7Ba%7D%20%3D%20-4%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%5E%7B4.40%7D_%7B0%7D)
