Answer:
b. 14
Explanation:
= Initial temperature = 27 °C = 27 + 273 = 300 K
= Final temperature = 37 °C = 37 + 273 = 310 K
= Initial Power radiated by the object
= Final Power radiated by the object
We know that the power radiated is directly proportional to fourth power of the temperature. hence

Percentage increase in power is given as

Answer:
D. the same as force. the applied force per cross-sectional area.
Explanation:
Tensile stress of a material is defined as the ratio of the applied force on the material to its cross sectional area. this is expressed mathematically as;
Tensile stress = Force/cross sectional area
Tensile stress = F/A
Force is measured in newton while cross sectional area is measured in m
Hence the unit of Tensile stress is N/m²
Answer:
a = - 1.987 × 10⁶ ft/s²
t = 6.84 × 10⁻⁴ s
Explanation:
v₀ = 910 ft/s
x = 5 in.
relation v = v₀ - k x
v = 0 as body comes to rest
0 = 900 - 5k/12
k = 2184 s⁻¹
acceleration

where
(A) a = -k × v
at v= 910 ft/s
a = - 1.987 × 10⁶ ft/s²
(B) at x = 3.9 in.
v = 910 - 3.9(2184)/12
v = 200.2 m/s




t = 6.84 × 10⁻⁴ s
Answer:
156.96 N
Explanation:
F=ma where m is the mass and a is acceleration
Substituting 16 Kg for m and 9.81 m/s2 for g then
F=16*9.81= 156.96 N
Answer:
They can be rank in the following way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Explanation:
The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.
Radiation is distributed along that electromagnetic spectrum according to the wavelength or frequency.
Highest frequencies
X-rays
Ultraviolet rays
Visible region
Lower frequencies
Infrared
Microwave
Radio waves
Radio waves and the visible region (yellow light, red light) are part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of 3.00x10^{8}m/s in vacuum.
However, the following equation relates the velocity, the frequency, and the wavelength:
(1)
(2)
It can be see in equation 2 that the frequency and the wavelength are inversely proportional (when the frequency increases the wavelength decreases).
Therefore, for what was already discussed, they can be rank in the next way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Summary:
In the case of the radio waves can be used:
Case for
:


Case for
:

