1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
14

What type of energy to high frequency waves have?

Physics
1 answer:
babunello [35]3 years ago
8 0

Answer:

Gamma rays is the correct answer.

Explanation:

You might be interested in
When a certain air-filled parallel-plate capacitor is connected across a battery, it acquires a charge of magnitude 172 μC on ea
crimeas [40]

Answer:

k = 2.279

Explanation:

Given:

Magnitude of charge on each plate, Q = 172 μC

Now,

the capacitance, C of a capacitor is given as:

C = Q/V

where,

V is the potential difference

Thus, the capacitance due to the charge of 172 μC will be

C = \frac{(172\ \mu C)}{V}

Now, when the when the additional charge is accumulated

the capacitance (C') will be

C' = \frac{(172+220)\ \mu C)}{V}

or

C' = \frac{(392)\ \mu C)}{V}

now the dielectric constant (k) is given as:

k=\frac{C'}{C}

substituting the values, we get

k=\frac{\frac{(392\ \mu C)}{V}}{\frac{(172)\ \mu C)}{V}}

or

k = 2.279

6 0
3 years ago
A 49 kg bear slides, from rest, 11 m down a lodgepole pine tree, moving with a speed of 3.3 m/s just before hitting the ground.
hichkok12 [17]

Answer:

a) \Delta U_g=-5.3kJ

b) K=0.27kJ

c) F_f=0.45kN

Explanation:

the gravitational potential energy is given by:

U_g=m.g.h\\

\Delta U_g=m.g.h_f-m.g.h_i\\\Delta U_g=49kg*9.8m/s^2*(0m-11m)\\\Delta U_g=-5.3kJ

The kinetic energy is given by:

K=\frac{1}{2}m.v^2\\

the initial kinetic energy is zero because the motion started from rest, so:

K=\frac{1}{2}*49kg*(3.3m/s^2)^2\\K=0.27kJ

applying the conservation of energy theorem:

U_g-W_f=K_f\\W_f=-(\Delta K+\Delta U)\\W_F=5.3kJ-0.27kJ\\W_F=-5.0kJ

The work done by the friction force is given by:

W_f=F_f.h.cos(\theta)\\

the angle of the force is 180 degrees because it's against the movement:

F_f=\frac{W_f}{h.cos(\theta)}\\\\F_f=\frac{-5.0kJ}{11m.cos(180^o)}\\\\F_f=0.45kN

8 0
3 years ago
The velocity of a body is given by the equation v= a + bx, where 'x' is displacement. The unit of b is .......
valina [46]

Answer:

s^ -1    ( or    1/sec)

Explanation:

Velocity is given in units of displacement / sec

like feet /sec   or   m/sec    

so b would have units of   s^-1

(or perhaps a more general term would be   time^-1)

8 0
1 year ago
Blake and Sandra are having a rummage sale. Blake drags 3 boxes a distance of 10 meters each. He exerts a force of 20 newtons on
vampirchik [111]
For Blake:

3 boxes at a distance of 10 meters each, each box weighs 20 N

Work done by Blake = 3 * 10m * 20N
                                 = 600 J
Power = 600 J/ 2 min
           = 300 J/min

For Sandra:

4 boxes, 15 N each at a distance of 12 meters each. 

Work done by Sandra = 4 * 15 N *12m
                                    =  720 J
Power = 720 J/ 4 min
           = 180 J/min

Blake does less work than Sandra. 
Blake's power is more than Sandra's.
5 0
3 years ago
Read 2 more answers
The end diastolic volume of a heart is 140 mL Assume that it is a sphere. At end diastole, the intraventricular pressure is 7mmI
Vera_Pavlovna [14]

Answer:

Explanation:

We know that, V = 140 mL = 0.00014 m3

Assume that it is a sphere. so, we have

V = (4/3) \pir3

r3 = (0.00014 m3) (3) / (4) (3.14)

r = \sqrt[3]{}\sqrt[3]{}3\sqrt{}3.34 x 10-5 m3

r = 1.93 x 10-7 m

(a) The wall tension at end diastole will be given as :

using a formula, we have

T = P r / 2 H

where, P = intraventricular pressure at end diastole = 7 mmHg = 933.2 Pa

H = wall thickness at this time = 0.011 m

then, we get

T = (933.2 Pa) (1.93 x 10-7 m) / 2 (0.011 m)

T = 8.18 x 10-3 N

(b) The wall tension at the end of isovolumetric contraction will be given as :

using a formula, we have

T = P r / 2 H

where, P = intraventricular pressure at end of isovolumetric contraction = 80 mmHg = 10665.7 Pa

H = wall thickness at this time = 0.011 m

then, we get

T = (10665.7 Pa) (1.93 x 10-7 m) / 2 (0.011 m)

T = 9.35 x 10-2 N

(d) The wall stress from A and B which will be given as :

we know that, \sigma = T / w

For part A, we have

\sigmaA = (8.18 x 10-3 N) / (0.011 m)

\sigmaA = 0.743 N/m

For part B, we have

\sigmaB = (9.35 x 10-2 N) / (0.011 m)

\sigmaB = 8.5 N/m

4 0
2 years ago
Other questions:
  • Jake is in chemistry class. He makes a list of the chemicals his instructor described and the properties of each.
    12·2 answers
  • In the early 19th century Christian Doppler, an Austrian physicist, proposed a theory regarding the properties of a moving sourc
    13·2 answers
  • A plane flies at 200 m/s, emitting a 600 Hz roar. Assuming a 340 m/s speed of sound, what will be the frequency of sound waves h
    11·1 answer
  • Four waves are described by the following equations, where distances are measured in meters and times in seconds. I. y = 0.12 co
    8·1 answer
  • Express in words AND mathematically the relationship between…<br> Period and frequency
    14·1 answer
  • There is a current of 0.99 a through a light bulb when its connected to a 9.7 v battery what is the resistance of the light bulb
    9·1 answer
  • Determine the speed, wavelength, and frequency of light from a helium-neon laser as it travels through diamond. The wavelength o
    12·1 answer
  • 0.5 kg air hockey puck is initially at rest. What will it’s kinetic energy be after a net force of .8 N acts on it for a distanc
    12·1 answer
  • Suppose you design an apparatus in which a uniformly charged disk of radius R is to produce an electric field. The field magnitu
    8·1 answer
  • suppose you have a 69.0-kg wooden crate resting on a wood floor. what maximum force can you exert horizontally on the crate with
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!