Answer:
2.74
Explanation:
Magnification = image distance/object distance
Mag = v/u
Given
v = 46cm
u = 16.8
Magnification = 46/16.8
Magnification = 2.74
Hence the magnification is 2.74
Answer:
The moment of inertia about an axis through the center and perpendicular to the plane of the square is

Explanation:
From the question we are told that
The length of one side of the square is 
The total mass of the square is 
Generally the mass of one size of the square is mathematically evaluated as

Generally the moment of inertia of one side of the square is mathematically represented as

Generally given that
it means that this moment inertia evaluated above apply to every side of the square
Now substituting for 
So

Now according to parallel-axis theorem the moment of inertia of one side of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as
![I_a = I_g + m [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20m%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> ![I_a = I_g + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
substituting for 
=> ![I_a = \frac{1}{12} * \frac{M}{4} * a^2 + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%2A%20%20%5Cfrac%7BM%7D%7B4%7D%20%2A%20a%5E2%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> 
=> 
Generally the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as

=> 
=> 
The sum of all forces applied to the object = (mass) x (acceleration)
The sum of all forces applied to the object = (30) x (15)
= <u>450 newtons</u>, in the direction of the acceleration.
Answer:
The bending moment is 459.16 N.m
Explanation:
From the given information;
Let's assume that the angle is 66°
Then, the free body diagram is draw and attached in the file below.
Now, the calculation of the acceleration from the first part of the free body diagram is:

Bending moment M:
From the second part of the diagram:
