Answer:
x = -15
Step-by-step explanation:
3x-5=2(2x+5)
Expand by using distributive property
3x - 5 = 4x + 10
Subtract 4x from both sides
3x - 5 - 4x = 4x + 10 - 4x
Simplifying
-x - 5 = 10
Add 5 to both sides
-x - 5 + 5 = 10 + 5
Simplifying
-x = 15
Divide both sides by -1
x = -15
3/2
I picked a point and counted up 3 and over 2 to the next point
Answer: (-2, 5) and (2, -3)
<u>Step-by-step explanation:</u>
Graph the line y = -2x + 1 (which is in y = mx + b format) by plotting the y-intercept (b = 1) on the y-axis and then using the slope (m = -2) to plot the second point by going down 2 and right 1 unit from the first point:
y - intercept = (0, 1) 2nd point = ( -1, 1).
Graph the parabola y = x² - 2x - 3 by first plotting the vertex and then plotting the y-intercept (or some other point):

vertex = (1, -4) 2nd point (y-intercept) = (0, -3)
<em>see attached</em> - the graphs intersect at two points: (-2, 5) and (2, -3)
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1