Answer:
c. If the double helix were unwound, each nucleotide along the two parent strands would form a hydrogen bond with its complementary nucleotide.
Explanation:
According to the Watson-Crick model, two DNA strands are held together by complementary base pairing wherein each nucleotide of one DNA strand forms hydrogen bonds with its complementary nucleotide present in the other strand. During DNA replication, two DNA strands are separated by the action of helicases enzymes.
The separated DNA strands serve as a template for DNA replication. Here, each nucleotide of the template DNA strand binds to its complementary nucleotide by hydrogen bonds. For example, adenine of the template strand forms two hydrogen bonds with thymine while guanine forms three hydrogen bonds with cytosine.
Answer;
The above statement is true
Explanation;
-Circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation.
When an object moves in a circle at a constant speed its velocity (which is a vector) is constantly changing. Its velocity is changing not because the magnitude of the velocity is changing but because its direction is.
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
<span>ESWL
Its just the first letters of the words.</span>