Answer:
Option c. (Both Technician A and B are correct)
Explanation:
A transmission system consists of 3 shafts. The input shaft, the counter shaft, and the main shaft. The clutch gear always rotates with input shaft and is a crucial element of the input shaft.
The counter shaft is actually several gears machined out of a single piece of steel. The counter shaft may also be called counter gear or cluster gear. It is a secondary shaft that runs parallel to the mainshaft in a gearbox and is used to provide powers to machine components such as the drive axle.
The main gears (also called the speed gears) on main shaft (also known as the output shaft) are used to transfer rotation from counter shaft to the output shaft.
Hence in the light of above description, both technician A and B are correct.
I believe that the answer is C<span />
Answer:
Power generate by generator = 265 W (Approx.)
Explanation:
Given:
Mass of student = 62 kg
Height of stairs = 3.4 meter
Time taken = 7 second
Find:
Power generate by generator
Computation:
Power = Force x [Distance / Time]
Power = [Mass x gravitational acceleration] x [Distance / Time]
Power = [62 x 9.8][3.4/7]
Power = [607.6][3.4/7]
Power = 265.12
Power generate by generator = 265.12
Power generate by generator = 265 W (Approx.)
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.
D is the answer the force excerted on the ball is greater than gravity