Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Acceleration is found if we have the force and mass.
With the following equation: F = ma, we can find the missing values.
F = 25n
M = 0.5 kg
a = ?
a = f/m
a = 25/0.5
a = 50
a = 50 m/s
So, the acceleration is 50 m/s^2
There is no theoretical OR observational evidence for that statement.
Answer:
<h3>The answer is 45 J</h3>
Explanation:
The work done by an object can be found by using the formula
<h3>workdone = force × distance</h3>
From the question
distance = 3 meters
force = 15 newtons
We have
workdone = 15 × 3
We have the final answer as
<h3>45 J</h3>
Hope this helps you
Answer:
3600joules
Explanation:
formula :W=FS
W=work done (J)
F=force (N)
S=displacement moved in the direction of force (m)
200N×18m
=3600J