Impulse describes the change of momentum. Since we don't know the momentum of the soccer ball before the hit, this question is hard to answer. If you assume the momentum of the ball before the hit was p = 0, then the change in momentum is just Δp = Impulse = mv.
Answer:
1.23 m/s
Explanation:
p=mv
57.2 = 46.5v
v= 57.2/46.5
v= 1.23
If you want to verify your answer, just insert the value of v in the equation.
Answer:
The magnitude of electric force is 
Explanation:
Coulomb's Law:
The force of attraction or repletion is
- directly proportional to the products of charges i.e

- inversely proportional to the square of distance i.e


[ k is proportional constant=9×10⁹N m²/C²]
There are two types of force applied on Q=+2.5 μC=2.5×10⁻⁶ C
Let F₁ force be applied on Q =+2.5 μC by q₁= -5.0 μC = - 5.0×10⁻⁶ C
and F₂ force be applied on Q=+2.5 μC by q₂= 5.0 μC= 5.0×10⁻⁶ C
Since the magnitude of F₁ and F₂ are same. Therefore their y component cancel.
If we draw a line from q₁ to Q .
The it forms a triangle whose base = 4.0 cm and altitude =3.0 cm.
Let hypotenuse = r
Therefore, 
we know,


Total force 


[ r=5]
N
The magnitude of electric force is 
Answer:
E. d and O
Explanation:
"Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction gratings".
According to Huygens’s principle, "for each element of the wavefront in the slit emits wavelets. These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel".
The destructive interference for a single slit is given by:

Where
d is the slit width
is the light's wavelength
is the angle relative to the original direction of the light
m is the order od the minimum
I represent the intensity
When the intensity and the wavelength are incident normally the angular as we can see on the expression above the angular separation just depends of the distance d and the wavelength O.