Answer:
Frequency = 3 Hz
Explanation:
Frequency is a measure of Hertz. Recall that Hertz is the unit expressing cycles/second, where one second is the denominator of the fraction for simplicity. If there are 12 waves every four seconds, and one wave represents one cycle, dividing 12 waves by 4 seconds will give the answer of 3 waves (or cycles) per one second.
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
You can write the equation in 3 different ways, depending on which quantity you want to be the dependent variable. Any one of the three forms can be derived from either of the other two with a simple algebra operation. They're all the same relationship, described by "Ohm's Law".
==> Current = (potential difference) / (resistance)
==> Potential difference = (current) x (resistance)
==> Resistance = (potential difference) / (resistance)