Using PV = nRT, we can calculate the moles of the sample.
874 mmHg = 116,524 Pa
n = PV/RT
n = 116,524 x 294 x 10⁻⁶ / 8.314 x (140 + 273)
n = 9.98 x 10⁻³ mol
moles = mass / Mr
Mr = 0.271/9.98 x 10⁻³
Mr = 27.2
Mass of empirical formula = 14
Repeat units = 27.2 / 14 ≈ 2
Formula of substance:
C₂H₄
Combustion equation:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
1 mole produces 2 moles of CO₂, so 3 moles will produce 6 moles CO₂
Explanation:
total heat = Heat required to convert 2 kg of ice to 2 kg of water at 0 °C + Heat required to convert 2 kg of water at 0 °C to 2 kg of water at 20 °C.
Heat=mhfg+mCpΔT
Here, m ( mass of ice) = 2 kg
hfg (latent heat of fusion of ice) = 334 KJ
Cp of water (specific heat) = 4.187 KJ/Kg-K
ΔT(Temperature difference) = 20 °C
Therefore, Heat required = 2 x 334 + 2 x 4.187 x (20 - 0 )
Heat reqd= 835.48 KJ
Therefore, to melt 2 kg of ice 835.48 KJ of heat is required.
No they wouldn't. <span>You can't make an </span>ionic compound<span> with these elements.</span>
3-ethyl-2.4-dimethyl-octanoic acid
we can differentiate a heterozygous individual from a homozygote by analyzing their alleles. If the alleles in the homologous chromosomes are the same, we say that it is a homozygote. If the alleles are different, the individual is heterozygous.