Answer:
x=2 or x=-2
Step-by-step explanation:
I'm not sure what you're asking, but when you solve, set both sets of parentheses equal to 0 and solve. This makes x either equal to 2 or -2.
Answer:
I can't you didn't give the names of points on the line
Step-by-step explanation:
Answer:
Option A and C is correct.
Step-by-step explanation:
Discount is defined as a reduced price on something being sold or at a price lower than that item is normally sold for.
For a 20% discount,
Given:
Initial prices = $ d
Discounted price = % discount × original/initial cost
= 20/100 × d
= 0.2 × d
Selling price = original cost - discounted price
= d - 0.2d
= 0.8 × d
= 0.8d
The correct answer is C. <span>Similar polygons are never congruent.</span>
Answer:
![r = \±\sqrt{14](https://tex.z-dn.net/?f=r%20%3D%20%5C%C2%B1%5Csqrt%7B14)
![Product = -14](https://tex.z-dn.net/?f=Product%20%3D%20-14)
Step-by-step explanation:
Given
![\frac{1}{2x} = \frac{r - x}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2x%7D%20%3D%20%5Cfrac%7Br%20-%20x%7D%7B7%7D)
Required
Find all product of real values that satisfy the equation
![\frac{1}{2x} = \frac{r - x}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2x%7D%20%3D%20%5Cfrac%7Br%20-%20x%7D%7B7%7D)
Cross multiply:
![2x(r - x) = 7 * 1](https://tex.z-dn.net/?f=2x%28r%20-%20x%29%20%3D%207%20%2A%201)
![2xr - 2x^2 = 7](https://tex.z-dn.net/?f=2xr%20-%202x%5E2%20%3D%207)
Subtract 7 from both sides
![2xr - 2x^2 -7= 7 -7](https://tex.z-dn.net/?f=2xr%20-%202x%5E2%20-7%3D%207%20-7)
![2xr - 2x^2 -7= 0](https://tex.z-dn.net/?f=2xr%20-%202x%5E2%20-7%3D%200)
Reorder
![- 2x^2+ 2xr -7= 0](https://tex.z-dn.net/?f=-%202x%5E2%2B%202xr%20%20-7%3D%200)
Multiply through by -1
![2x^2 - 2xr +7= 0](https://tex.z-dn.net/?f=2x%5E2%20-%202xr%20%2B7%3D%200)
The above represents a quadratic equation and as such could take either of the following conditions.
(1) No real roots:
This possibility does not apply in this case as such, would not be considered.
(2) One real root
This is true if
![b^2 - 4ac = 0](https://tex.z-dn.net/?f=b%5E2%20-%204ac%20%3D%200)
For a quadratic equation
![ax^2 + bx + c = 0](https://tex.z-dn.net/?f=ax%5E2%20%2B%20bx%20%2B%20c%20%3D%200)
By comparison with ![2x^2 - 2xr +7= 0](https://tex.z-dn.net/?f=2x%5E2%20-%202xr%20%2B7%3D%200)
![a = 2](https://tex.z-dn.net/?f=a%20%3D%202)
![b = -2r](https://tex.z-dn.net/?f=b%20%3D%20-2r)
![c =7](https://tex.z-dn.net/?f=c%20%3D7)
Substitute these values in ![b^2 - 4ac = 0](https://tex.z-dn.net/?f=b%5E2%20-%204ac%20%3D%200)
![(-2r)^2 - 4 * 2 * 7 = 0](https://tex.z-dn.net/?f=%28-2r%29%5E2%20-%204%20%2A%202%20%2A%207%20%3D%200)
![4r^2 - 56 = 0](https://tex.z-dn.net/?f=4r%5E2%20-%2056%20%3D%200)
Add 56 to both sides
![4r^2 - 56 + 56= 0 + 56](https://tex.z-dn.net/?f=4r%5E2%20-%2056%20%2B%2056%3D%200%20%2B%2056)
![4r^2 = 56](https://tex.z-dn.net/?f=4r%5E2%20%3D%2056)
Divide through by 4
![r^2 = 14](https://tex.z-dn.net/?f=r%5E2%20%3D%2014)
Take square roots
![\sqrt{r^2} = \±\sqrt{14](https://tex.z-dn.net/?f=%5Csqrt%7Br%5E2%7D%20%3D%20%5C%C2%B1%5Csqrt%7B14)
![r = \±\sqrt{14](https://tex.z-dn.net/?f=r%20%3D%20%5C%C2%B1%5Csqrt%7B14)
Hence, the possible values of r are:
or ![-\sqrt{14](https://tex.z-dn.net/?f=-%5Csqrt%7B14)
and the product is:
![Product = \sqrt{14} * -\sqrt{14}](https://tex.z-dn.net/?f=Product%20%3D%20%5Csqrt%7B14%7D%20%2A%20-%5Csqrt%7B14%7D)
![Product = -14](https://tex.z-dn.net/?f=Product%20%3D%20-14)