1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
3 years ago
13

A slab of insulating material has thickness 2d and is oriented so that its faces are parallel to the yz-plane and given by the p

lanes x = d and x = -d. The y- and z-dimensions of the slab are very large compared to d; treat them as essentially infinite. The slab has a uniform positive charge density rho. (a) Explain why the electric field due to the slab is zero at the center of the slab (x = 0). (b) Using Gauss’s law, find the electric field due to the slab (magnitude and direction) at all points in space.
Physics
1 answer:
Anika [276]3 years ago
7 0

Answer:

Electric field at (x, y, z):  E=\frac{\rho x}{\epsilon_o}

Explanation:

(a) The slab is of an insulating material and has a uniform charge distribution. We can visualize this as infinite number of point charges, distributed throughout the slab, equally spaced apart. So if we (hypothetically) start to calculate the electric field due to each charge at x = 0, we shall always find a charge at a mirrored position about the x = 0 plane (within x = -d and x = d) and hence will cancel out the electric field.

A simpler example would be an infinitely long wire of uniform charge distribution. Any point on the wire will have zero electric field has there are essentially equal number of charges on either side (the length of the wire being infinitely long)

(b) Let us take a cylinder as a Gaussian surface with base area A. We shall take advantage of the symmetry about x = 0 and shall position the cylinder perpendicular to the y-z plane with x = 0 being the mid-point. Now the electric flux will only flow out through the 2 bases of the cylinder. This is because the slab has infinite dimensions along y and z-axes (think of an infinite <em>sheet </em>of charge) and the electric field always starts out perpendicular to any surface of charges.  If the Electric field at some point on the base of the cylinder be E, then total outgoing flux = 2EA

\rho is the charge density, hence,  Q_{enclosed}=\rho\times volume=2\rho Al

where 2l is the length of the cylinder and l is the x-coordinate.

Therefore, using Gauss's law,

2EA=\frac{2\rho Al}{\epsilon_o}

or, E=\frac{\rho l}{\epsilon_o}

or, E=\frac{\rho x}{\epsilon_o}

where, \epsilon_o = permittivity of free space.

You might be interested in
Which property of the wave makes it-(C)
AlekseyPX

Answer:

low amplitude hope it will help you

4 0
3 years ago
Read 2 more answers
A bungee cord can stretch, but it is never compressed. When the distance between the two ends of the cord is less than its unstr
Ksju [112]

Answer:

Explanation:

Given that

g=9.8m/s²

The spring constant is

k=50N/m

The length of the bungee cord is

Lo=32m

Height of bridge which one end of the bungee is tied is 91m

A steel ball of mass 92kg is attached to the other end of the bungee.

The potential energy(Us) of the steel ball before dropped from the bridge is given as

P.E= mgh

P.E= 92×9.8×91

P.E= 82045.6 J

Us= 82045.6 J

Potential energy)(Uc) of the cord is given as

Uc= ½ke²

Where 'e' is the extension

Then the extension is final height extended by cord minus height of cord

e=hf - hi

e=hf - 32

Uc= ½×50×(hf-32)²

Uc=25(hf-32)²

Using conservation of energy,

Then,

The potential energy of free fall equals the potential energy in string

Uc=Us

25(hf-32)²=82045.6

(hf-32)² = 82045.6/25

(hf-32)²=3281.825

Take square root of both sides

√(hf-32)²=√(3281.825)

hf-32=57.29

hf=57.29+32

hf=89.29m

We neglect the negative sign of the root because the string cannot compressed

3 0
3 years ago
It took 500 newtons of force to push a car 4 meters. How much work was done?
Ede4ka [16]
Work = Force x Distance = 500 x 4 = 2000 Nm = 2000 J
3 0
2 years ago
A piano wire with mass 2.60g and length 84.0 cm is stretched with a tension of 25.0 N. A wave with frequency 120.0 Hz and amplit
likoan [24]

Answer:

Power will be 0.2023 watt

And when amplitude is halved then power will be 0.0505 watt

Explanation:

We have given mass of the Piano wire m = 2.60 gram = 0.0026 kg

Length of wire l = 84 cm = 0.84 m

So mass density \mu =\frac{m}{l}=\frac{0.0026}{0.84}=0.0031kg/m

Tension in the wire T = 25 N

Frequency f = 120 Hz

So angular frequency \omega =2\pi f=2\times 3.14\times 120=753.6rad/sec

And amplitude A = 1.6 mm = 0.0016 m

We have to find the generated power

Power is given by P=\frac{1}{2}\sqrt{\mu T}\omega ^2A^2=\frac{1}{2}\times \sqrt{0.0031\times 25}\times 753.6^2\times 0.0016^2=0.2023watt

From the relation we can see that power P\ \propto\ A^2

So if amplitude is halved then power will be \frac{1}{4} times

So power will be equal to \frac{0.2023}{2}=0.0505watt

4 0
3 years ago
A manometer is used to measure the air pressure in a tank. the fluid used has a specific gravity of 1.25, and the differential h
BartSMP [9]
Specific Gravity of the fluid = 1.25 
Height h = 28 in
 Atmospheric Pressure = 12.7 psia
 Density of water = 62.4 lbm/ft^3 at 32F
 Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
 Density of the Fluid p = 78 lbm/ft^3
 Difference in pressure as we got the differential height, dP = p x g x h  dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
 Difference in pressure = 1.26 psia
 (a) Pressure in the arm that is at Higher 
 P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
 (b) Pressure in the tank that is at Lower
 P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
4 0
3 years ago
Other questions:
  • Does wind have atoms and molecules in int
    8·1 answer
  • An alpha particle (charge +2e) travels in a circular path of radius .5m in a magnetic field of 1.0 T. Find the (a) period, (b) s
    13·1 answer
  • What is the fleas acceleration as it extends its legs
    8·1 answer
  • A solid disk and a thin-walled hoop each have a diameter of 8 cm. Both are released from rest at the same time at the top of a r
    7·1 answer
  • Dos masas de 8kg es tan unidas en el extremo de una varilla de aluminio de 400mm de longitud. La varilla está sostenida en su pa
    10·1 answer
  • CAN SOMEONE PLEASE HELP ME ASAP PLEASE !!!!!​
    15·1 answer
  • Plz help me with these :)
    12·2 answers
  • what different forms of energy are demonstrated by tv remote, flashlight, string lol ights, clock, and Toys​
    7·1 answer
  • What are the major forces that drive patterns of atmospheric movement?<br>help plz i being timed
    12·1 answer
  • G.P.E = weight (n) x height (m). 2 identical twins are skiing down 2 different slopes. one is 1000m high, the other is 1500 m hi
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!