The amount of force required to stretch or compress the spring is known as the spring force. Its unit is Newton(N). Force is needed to stretch spring is 10.2 N.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =?
K is the spring constant= 8.5 N/m
x is the length by which spring got stretched = 1.2m

Hence the force is needed to stretch the spring is 10.2 N.
To learn more about the spring force refer to the link;
brainly.com/question/4291098
#82
here we know that
acceleration = 2 m/s/s
time = 5 s
initial speed = 4 m/s
now we can use kinematics to find the final speed



So correct answer will be option D)
#83
here we know that
acceleration = 3 m/s/s
time = 4 s
initial speed = 5 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
#84
here we know that
acceleration = 7 m/s/s
time = 3 s
initial speed = 8 m/s
now we can use kinematics to find the final speed



So correct answer will be option C)
Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Electromagnetic waves are waves that consist of vibrating electric and magnetic fields. They transfer energy through matter or across space. The transfer of energy by electromagnetic waves is called electromagnetic radiation. ... The two vibrating fields together form an electromagnetic wave.
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>