Answer:
(a)0.0675 J
(b)0.0675 J
(c)0.0675 J
(d)0.0675 J
(e)-0.0675 J
(f)0.459 m
Explanation:
15g = 0.015 kg
(a) Kinetic energy as it leaves the hand

(b) By the law of energy conservation, the work done by gravitational energy as it rises to its peak is the same as the kinetic energy as the ball leave the hand, which is 0.0675 J
(c) The change in potential energy would also be the same as 0.0675J in accordance with conservation law of energy.
(d) The gravitational energy at peak point would also be the same as 0.0675J
(e) In this case as the reference point is reversed, we would have to negate the original potential energy. So the potential energy as the ball leaves hand is -0.0675J
(f) Since at the maximum height the ball has potential energy of 0.0675J. This means:
mgh = 0.0675
0.015*9.81h = 0.0675
h = 0.459 m
The ball would reach a maximum height of 0.459 m
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds
Answer:
(a) Angular acceleration is 1.112 rad/s².
(b) Average angular velocity is 2.78 rad/s .
Explanation:
The equation of motion in Rotational kinematics is:
θ = θ₀ + 0.5αt²
Here θ is angular displacement at time t, θ₀ is angular displacement at time t=0, t is time and α is constant angular acceleration.
(a) According to the problem, θ is 13.9 rad, θ₀ is zero as it is at rest and t is 5 s. Put these values in the above equation:
13.9 = 0 + 0.5α(5)²
α = 1.112 rad/s²
(b) The equation of average angular velocity is:
ω = Δθ/Δt
ω = 
ω = 2.78 rad/s