251.0 is the correct mass of the light bulb and paperclips together.
<h3>What is mass ? </h3>
Mass is a physical body's total amount of matter. Inertia, or the body's resistance to acceleration when a net force is applied, is also measured by this term. The strength of an object's gravitational pull to other bodies is also influenced by its mass. The kilogram serves as the SI's fundamental mass unit.
For a body, mass is constant. Mass can be calculated using the formula: mass = volume density. A mass's weight is a measurement of the gravitational force at work on it. The kilogram is the SI unit of mass.
The mass of the substance will therefore be calculated as follows: MASS OF A SUBSTANCE = VOLUME DENSITY.
So finally we can say that the mass of the light bulb and paperclips together is 250.1g.
To know more about Mass please click here : brainly.com/question/19385703
#SPJ4
Answer:
C
Explanation:
always look for the line that is perpendicular to the surface
Answer:
Explanation:
The equation of the reaction is given as:
3H₂ + N₂ → 2NH₃
Given parameters:
Number of moles of NH₃ = 8moles
Number of moles of H₂ = ?
Number of moles of N₂ = ?
Solution
From the balanced reaction equation, we can establish some mole ratios that would help solve the problem:
To find the number of moles of H₂;
The equation shows that:
2 moles of NH₃ were produced using 3 moles of H₂
therefore: 8 moles of NH₃ will be produced by
= 12moles
So, 12 moles of hydrogen gas will react to give 8 moles of ammonia.
To find the number of moles of N₂
The equation shows that:
2 moles of NH₃ were produced from 1 mole of N₂
8 moles of NH₃ would be produced from
= 4moles of Nitrogen gas
Therefore, 4moles of nitrogen gas would be produced
Friction. Imagine rubbing your hand against a carpet and how it gets hot even though you are pushing it afar. That is friction.
Answer: 0.18 V
Explanation:-

Here Cd undergoes oxidation by loss of electrons, thus act as anode. nickel undergoes reduction by gain of electrons and thus act as cathode.
=-0.40V[/tex]
=-0.24V[/tex]

Here Cd undergoes oxidation by loss of electrons, thus act as anode. nickel undergoes reduction by gain of electrons and thus act as cathode.

Where both
are standard reduction potentials.
![E^0=E^0_{[Ni^{2+}/Ni]}- E^0_{[Cd^{2+}/Cd]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BNi%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BCd%5E%7B2%2B%7D%2FCd%5D%7D)

Using Nernst equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cd^{2+}]}{[Ni^{2+]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCd%5E%7B2%2B%7D%5D%7D%7B%5BNi%5E%7B2%2B%5D%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= standard electrode potential = 0.16 V
![E_{cell}=0.16-\frac{0.0592}{2}\log \frac{[0.10]}{[0.5]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D0.16-%5Cfrac%7B0.0592%7D%7B2%7D%5Clog%20%5Cfrac%7B%5B0.10%5D%7D%7B%5B0.5%5D%7D)

Thus the potential of the following electrochemical cell is 0.18 V.