Conductivity, malleability, and high melting points. Hope this helps :)
The answer is: emitted gas is carbon dioxide (CO₂).
Neutralization is is reaction in which an acid (in this example vinegar or acetic acid CH₃COOH) and a base (in this example soda)
Balanced chemical reaction of vinegar and antacid:
CH₃COOH(aq) + NaHCO₃(aq) → CH₃COONa(aq) + H₂O(l) + CO₂(g).
Sodium acetate (CH₃COONa) is a salt.
Sodium bicarbonate (NaHCO₃) is an antacid. Sodium bicarbonate is the active ingredient in baking soda.
<span>
Correct Answer:
Option 3 i.e. 30 g of KI dissolved in 100 g of water.
Reason:
Depression in freezing point is a
colligative property and it is directly proportional to molality of solution.
Molality of solution is mathematically expressed as,
Molality = </span>

<span>
In case of
option 1 and 2, molality of solution is
0.602 m. For
option 3, molality of solution is
1.807 m, while in case of
option 4, molality of solution is
1.205 m.
<u><em>Thus, second solution (option 2) has highest concentration (in terms of molality). Hence, it will have lowest freezing point</em></u></span>
Answer:
The answer to your question is 7.4 moles of Aluminum
Explanation:
Data
moles of Al = ?
moles of Al₂O₃ = 3.7
Balanced chemical reaction
4 Al + 3 O₂ ⇒ 2 Al₂O₃
To solve this problem use proportions and cross multiplication. Use the coefficients of the balanced chemical equation.
4 moles of Aluminum ----------------- 2 moles of Al₂O₃
x ----------------- 3.7 moles of Al₂O₃
x = (3.7 x 4) / 2
x = 14.8 / 2
x = 7.4 moles of Aluminum