The final temperature of the sample of gas is 689.65 Kelvin.
<h3>What is the relation between temperature and pressure?</h3>
Relation between the temperature and pressure will be represented by the ideal gas equation PV = nRT, and for this question required equation is:
P₁/T₁ = P₂/T₂, where
P₁ & T₁ are the pressure and temperature of the initial sample.
P₂ & T₂ are the pressure and temperature of the final sample.
Pressure is in mmHg and on putting values from the question on the above equation, we get
T₂ = (810)(390.8) / (760) = 416.5 degree C = 689.65K
Hence required temperature of the sample is 689.65K.
To know more about ideal gas equation, visit the below link:
brainly.com/question/555495
#SPJ1
Explanation:
Speed is the rate of an object moving along a path, whereas velocity is the direction of motion
Electricity is the flow of electric charge
Answer:
In an acid-base equilibrium, acid becomes a conjugate base and base becomes a conjugate acid.
Explanation:
Let's remember the Bronsted-Lowry theory to answer this specific question. According to the theory, acid is a proton donor, while a base is a proton acceptor.
Consider an acid in a form HA (aq) and base in a form of B (aq). Since acid is a proton donor, it will donate its hydrogen ion to the base, B. The resultant products would be
(aq) and
(aq).
Remember that an acid-base reaction is an equilibrium reaction. This means we may also look at this proton transfer reaction from the product side towards the reactants. Summarizing what has been said, we may write the equilibrium as:
⇄ 
Now acid, HA, donates a proton to become a conjugate base. The conjugate base, if we look from the reverse equation side, is actually a base, since it can accept a proton to become HA. Similarly, B accepts a proton to become a conjugate acid. Looking from the reverse reaction, it can now donate a proton, so in reality we can consider it a base.
To summarize, your logic is correct.
Answer:
T2= 7.3°C
Explanation:
To solve this problem we will use Charles law equation i.e,
V1/T1 = V2/T2
Given data
V1 = 269.7 L
T1 = 6.12 °C
V2= 320.4 L
T2=?
Solution:
Now we will put the values in equation
269.7 L / 6.12°C = 320.4 L / T2
T2= 320.4 L × 6.12°C/ 269.7 L
T2= 1960.85 °C. L /269.7 L
T2= 7.3°C