Answer: 1.8 g
Explanation:
We start first, by calculating the amount of Helium
n = m/M
m = mass of Helium
M = molar mass if Helium
n = 2/4 = 0.5 moles
proceeding further, we use ideal gas law. PV = nRT
Then we have
P1V1/n1T1 = P2V2/n2T2
So that,
n2 = n1T1P2V2/P1V1T2
From the question, we know that, P1 = P2, and T1 = T2. So that,
n2 = n1v2/v1
n2 = (0.5 * 3.9) / 2
n2 = 1.95/2
n2 = 0.975 moles. With this, we can determine the mass, m2 of Helium
n = m/M
m = n * M
m = 0.975 * 3.9
m = 3.8
The difference between both masses are 3.8 - 2 = 1.8 g
Thus, 1.8 g of Helium was added to the cylinder
Answer:
175 m
Explanation:
In a velocity vs time graph, displacement is the area under the curve.
We can calculate this as area of a trapezoid:
A = ½ (10 m/s + 60 m/s) (5 s)
A = 175 m
Or, we can split the area into a rectangle and a triangle.
A = (10 m/s) (5 s) + ½ (60 m/s − 10 m/s) (5 s)
A = 175 m
Answer:
D air
Explanation:
it is not found on the periodic table
brainliest plsssssssssssssssss
|Momentum| = (mass) x (speed)
225 kg-m/s =(50kg) x (speed)
Divide each side by (50kg): Speed=(225 kg-m/s) / (50 kg) = 4.5 m/s .
Regarding the velocity, nothing can be said other than the speed, because
we have no information regarding the direction of the object's motion.