Answer:
t = 1.58 s
Explanation:
given,
Speed of ranger, v = 56 km/h
v = 56 x 0.278 = 15.57 m/s
distance, d = 65 m
deceleration,a = 3 m/s²
reaction time = ?
using stopping distance formula


t is the reaction time

t = 1.58 s
hence, the reaction time of the ranger is equal to 1.58 s.
Answer:
I would think the answer is color, if the wavelength is within the visible light spectrum. This could be answered in different ways but I'm pretty sure the answer you are looking for is hue/color.
No chande in mass becouse of the change in gravitational force do not effect in mass
Answer: well the time it takes to fall 100m is the same time it takes to travel 65m horizontally.
The time to fall vertically, t is sqrt(2d/g). [this comes from d = 1/2at^2]
so t = sqrt(2*100/9.8) = 4.52s.
The vertical speed at that time is g*t = 9.8*4.52 = 44.3m/s
The horizontal speed is the horizontal distance over the same 4.52s, = 65/4.52 = 14.4m/s.
so the final velocity is = sqrt(44.3^2 + 14.4^2) = 46.6m/s
Explanation: yes
Answer:

Explanation:
give data:
inside diameter = 5.0 cm
charge q = 0.25 nC
Outside diameter = 15 cm
potential V at inside sphere is = 
potential V at outside sphere is = 
k is constant whose value is = 
then potential difference between two point is
![\Delta V = kq \left [\frac{1}{R}-\frac{1}{r} \right ]](https://tex.z-dn.net/?f=%5CDelta%20V%20%3D%20kq%20%5Cleft%20%5B%5Cfrac%7B1%7D%7BR%7D-%5Cfrac%7B1%7D%7Br%7D%20%20%5Cright%20%5D)
![\Delta V = 9*10^{9}*0.25*10^{-9} \left [\frac{1}{0.05}-\frac{1}{0.15} \right ]](https://tex.z-dn.net/?f=%5CDelta%20V%20%3D%209%2A10%5E%7B9%7D%2A0.25%2A10%5E%7B-9%7D%20%5Cleft%20%5B%5Cfrac%7B1%7D%7B0.05%7D-%5Cfrac%7B1%7D%7B0.15%7D%20%5Cright%20%5D)
