Answer:
7
Explanation:
sodium has 1 valence electron because of its place on the periodic table. a trick to use is included in the picture below to find out how many valence electrons an element has. to get from 1 to 8 we add 7.
I hope this helps :))
Answer:
Magnesium bromide
Explanation:
its just the answer give brianliest
Answer:
Like most other metals, Gallium is solid at room temperature (or liquid if it is too hot in your room). But, if it is held [in hands] for long enough, it melts in your hands, and doesn't poison you like Mercury would. This is because of its unusually low melting point of (~29 degree Centigrade).
- It melts once it reaches its melting point.
:)
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
Answer:
Mass = 15.20 g of KCl
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
2 KClO₃ = 2 KCl + 3 O₂
Step 1: Calculate moles of KClO₃ as;
Moles = Mass / M/Mass
Moles = 25.0 g / 122.55 g/mol
Moles = 0.204 moles
Step 2: Find moles of KCl as;
According to equation,
2 moles of KClO₃ produces = 2 moles of KCl
So,
0.204 moles of KClO₃ will produce = X moles of KCl
Solving for X,
X = 2 mol × 0.204 mol / 2 mol
X = 0.204 mol of KCl
Step 3: Calculate mass of KCl as,
Mass = Moles × M.Mass
Mass = 0.204 mol × 74.55 g/mol
Mass = 15.20 g of KCl