<h2>C</h2>
Explanation:
The atomic number of S is 
So,number of electrons in S is 
The electronic configuration of S is 
The orbital electronic configuration of S is 
So,the number of orbitals involved is 9.
Characteristic properties are used because the sample size and the shape of the substance does not matter.
Answer:
Molarity is halved when the volume of solvent is doubled.
Explanation:
Using the dilution equation (volume 1)(molarity 1)=(volume 2)(molarity 2), we can demonstrate the effects of doubling volume.
Suppose the starting volume is 1 L and the starting molarity is 1 M, and doubling the volume would make the final volume 2 L.
Plugging these numbers into the equation, we can figure out the final molarity.
(1 L)(1 M)=(2 L)(X M)
X M= (1 L x 1 M)/(2 L)
X M= 1/2 M
This shows that the molarity is halved when the volume of solvent is doubled.
That depends. there are 2 possible answers.
H
C - C = C - H gives a different answer on the right than on the left.
One the left side, the second Carbon is attached to a double bond and has but one hydrogen attached to it.
The Carbon on the right of the double bond has 2
H
C- C = C - H
H
I'm not sure what you should put. It's one of those things that I would repeat my argument and submit it.
Answer:
THE HEAT NEEDED TO CHANGE 3KG OF WATER FROM 10 C TO 80 C IS 877.8kJ OR 877,800 J.
Explanation:
Mass = 3.0 kg = 3 * 1000 = 3000 g
Initial temperature = 10 C
Final temperature = 80 C
Change in temperature = 80 - 10 = 70 C
Specific heat of water = 4.18 J/g C
Heat needed = unknown
Heat is the amount of energy in joules needed to change a gram of water by 1 C.
Heat = mass * specific heat * change in temperature
Heat = 3000 g * 4.18 J/g C * 70 C
Heat = 877 800 Joules
Heat = 877.8 kJ.
The heat needed to change 3 kg mass of water from 10 C to 80 C is 877,800 J or 877.8 kJ.