Answer:
a)M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88 g/mol
b) if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Explanation:
0.2000 gHZ gives 100ml acid solution
33.5 ml of 0.1025 M NaOH is required to prepare it
the moles = mass / molar mass
mass = 0.200 gHZ
moles = 0.0335*100 * 0.1025 = 0.034
therefore molar mass = mass / moles
M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88
if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Hey there!:
Given the mass of PbCl(OH) :
0.135 Kg = 0.135 Kg*(1000g / 1Kg) = 135 g
Molecular mass of PbCl(OH) = 207+35.5+16+1 = 259.5 g / mol
Atomic mass of Pb = 207 g/mol
Hence mass of Pb in 135 g PbCl(OH) :
(207 g Pb / 259.5 g PbClOH) * 135g PbClOH =
0.79768 * 135 => 107.68 g of Pb
For Pb2Cl2CO3 :
Given the mass of Pb2Cl2CO3 :
0.135 Kg = 0.135 Kgx(1000g / 1Kg) = 135 g
Molecular mass of Pb2Cl2CO3 = 2*207+2*35.5+12+3*16 = 545 g / mol
Mass of Pb present in 1 mol (=545 g / mol) of Pb2Cl2CO3 = 2*207 = 414 g
Hence mass of Pb in 135 g Pb2Cl2CO3:
(414 g Pb / 545 g PbClOH) * 135g PbClOH =
0.75963 * 135 => 102.55 g of Pb2Cl2CO3
Hope that helps!
because it is mostly sunny there
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L
Answer: COMBINED FORCES
When forces act in the same direction, they combine to make a bigger force. When they act in opposite directions, they can cancel one another out. If the forces acting on an object balance, the object does not move, but may change shape.
Explanation: